Waters Synapt - at QuestPair.com/equipment
Waters Synapt
Selling the Waters Synapt?
Sign Up
Can‘t find Waters Synapt offers?
Post a request
Description
mass spectrometer, mass spectrometer, mass spectrometer, instrument, ion mobility mass spectrometer, mass spectrometer, mass spectrometer, mass spectrometer, ion mobility mass spectrometer, mass spectrometer, mass spectrometer
This model was found at
1574 locations
The model is used in
53 countries
Usage per year (up to 2020)
Loading histogram...
137 related research fields
Loading pie chart...

About the Waters Synapt

The model Waters Synapt was found in 1574 unique locations in 53 countries where it was mentioned from 2008 until recentlyIt is used by scientists in various research fields such as Analytical Chemistry, Biochemistry, Drug Discovery, Molecular Biology, and Organic Chemistry. The model is also used in Molecular Medicine, Pharmaceutical Science, General Chemistry, Physical and Theoretical Chemistry, General Medicine, Spectroscopy, Structural Biology, General Biochemistry, Genetics and Molecular Biology, Chemistry, Pharmacology, General Physics and Astronomy, Catalysis, Cell Biology, Microbiology, Plant Science, Clinical Biochemistry, Biotechnology, Inorganic Chemistry, Microbiology (medical), Biophysics, Genetics, Computer Science Applications, Immunology, Pharmacology, Toxicology and Pharmaceutics, and General Chemical Engineering.
Loading map...

Research that uses the Waters Synapt

Rohit Jain, Khaja Muneeruddin, Jeremy Anderson, Michael J. Harms, Scott A. Shaffer, C. Robert Matthews, Proceedings of the National Academy of Sciences, 118, 2021
Significance Orthologous proteins from the three superkingdoms have conserved their structures and functions over evolutionary time. We ask whether their folding mechanisms and the structures of their partially folded states are similarly conserved, using bacterial and archaeal representatives of the IGPS TIM barrel enzyme. Comparison of circular dichroism and fluorescence spectroscopic studies reveal a highly conserved mechanism, and hydrogen–deuterium exchange mass spectrometry analyses highlight similar cores of stability in regions dominated by clusters of branched aliphatic side chains. A bioinformatics analysis of hundreds of IGPS sequences from each superkingdom shows a very highly conserved sequence, V/ILLI, that nucleates the formation of a misfolded, microsecond intermediate and has existed since the last universal common ancestor of the IGPS family of proteins.
Paul Velander, Ling Wu, Sherry B. Hildreth, Nancy J. Vogelaar, Biswarup Mukhopadhyay, Shijun Zhang, Richard F. Helm, Bin Xu, 2020
Abstract Background: A range of neurodegenerative and related aging diseases, such as Alzheimer’s disease, Parkinson’s disease, and type 2 diabetes, are linked to toxic protein aggregation. Yet the mechanisms of protein aggregation inhibition by small molecule inhibitors remain poorly understood, in part because most protein targets of aggregation assembly are partially unfolded or intrinsically disordered, which hinders detailed structural characterization of protein-inhibitor complexes and structural-based mechanistic elucidation. Methods: Herein we employed a small molecule screening approach to identify inhibitors against three prototype amyloidogenic proteins in neurodegeneration and related proteinopathies: amylin, Ab and tau. We further systematically investigated selected class of inhibitors under aerobic and anaerobic conditions to uncover a key determinant of the inhibitory activities.Results: One remarkable class of inhibitors identified from all three parallel screenings against different amyloidogenic proteins was catechol-containing compounds and redox-related quinones/anthraquinones. Further mechanistic studies determined that the redox state of the broad class of catechol-containing compounds is a key determinant of the amyloid inhibitor activities. Conclusion: Our small molecule library screening platform was able to identify a broad class of amyloid inhibitors. Redox was found to be a key factor not only regulating the inhibitory activities but also involving the mechanism of inhibition. The molecular insights we gained not only explain why a large number of catechol-containing natural compounds, often enriched in healthy diet, have anti-neurodegeneration and anti-aging activities, but also could guide the rational design of therapeutic or nutraceutical strategies to target a broad range of neurodegenerative and related aging diseases.
Hui Shao, Wenmin Huang, Luisana Avilan, Veronique Receveur-Brechot, Carine Puppo, Rémy Puppo, Régine Lebrun, Brigitte Gontero, Helene Launay, 2020
Abstract Background CP12 is a small chloroplast protein that is widespread in various photosynthetic organisms and is often involved in the redox metabolic on/off switch of the Calvin Benson Bassham (CBB) cycle. The gene encoding this protein is conserved in many diatoms, but the protein has been overlooked in these organisms, despite their ecological predominance and their complex and still enigmatic evolutionary background. Methods A combination of biochemical, bioinformatics and biophysical methods including electrospray ionization-mass spectrometry, circular dichroism, nuclear magnetic resonance and small X ray scattering spectroscopy, was used to characterize a diatom CP12. Results Here, we demonstrate that CP12 is expressed in the marine diatom Thalassiosira pseudonana constitutively in dark-treated and in continuous light-treated cells as well as in all growth phases. This CP12 behaves abnormally under gel electrophoresis, is heat resistant and lacks a structural core, all features of intrinsically disorder family similarly to its homologues in other species. By contrast, unlike other known CP12 proteins that are monomers, this protein is a dimer as shown by native electrospray ionization-mass spectrometry and small angle X-ray scattering. In addition, small angle X-ray scattering showed that this CP12 is an elongated cylinder with kinks. Circular dichroism spectra indicated that CP12, though it has features of disordered proteins, has a high content of α-helices. Nuclear magnetic resonance spectroscopy showed that these helices are unstable and dynamic within a millisecond timescale. Together with in silico predictions, these results suggest that T. pseudonana CP12 has both coiled-coil and disordered regions. Conclusions These findings bring new insights into the large family of intrinsically disordered proteins increasing the diversity of known CP12 proteins. This raises questions about the role of this protein in addition to the well-established regulation of the CBB cycle.
Matthias Bauer, Jakob Steube, Ayla Päpcke, Olga Bokareva, Thomas Reuter, Serhiy Demeshko, Roland Schoch, Stephan Hohloch, Franc Meyer, Katja Heinze, Oliver Kühn, Stefan Lochbrunner, 2020
Abstract Photoactive compounds are essential for photocatalytic and luminescent applications, such as photoredox catalysis or light emitting diodes. However, the substitution of noble metals, which are almost exclusively used, by base metals remains a major challenge on the way to a more sustainable world.1 Iron is a dream candidate for this ambitious aim.2 But compared to noble metal complexes that show long-lived metal-to-ligand charge-transfer (MLCT) states, realization of emissive and photoactive iron complexes is demanding, due to the fast deactivation of charge transfer states into non-emissive inactive states. No MLCT emission has been observed for monometallic iron complexes before. Consequently, dual emission could also not yet be realized with iron complexes, as it is a very rare property even of noble metal compounds. Here we report the FeIII complex [Fe(ImP)2][PF6] (HImP = 1,1’-(1,3-phenylene)bis(3-methyl-1-imidazol-2-ylidene)), showing Janus-type dual emission by combining LMCT (ligand-to-metal charge transfer) with MLCT luminescence. The respective excited states are characterized by a record lifetime of τMLCT = 4.2 ns, and a moderate τLMCT = 0.2 ns. Only two emissive FeIII compounds are known so far and they show LMCT luminescence only.3,4 The unique properties of the presented complex are caused by the specific ligand design combining four N-heterocyclic carbenes with two cyclometalating groups, using the σ-donor strength of six carbon atoms and the acceptor capabilities of the central phenyl rings. Spectroscopically, doublet manifolds could be identified in the deactivation process, while (TD)DFT analysis revealed the presence of quartets as well. With three key advancements of realizing the first iron complex showing dual luminescence, a MLCT luminescence and a world record MLCT lifetime, the results constitute a basis for future application of iron complexes as white light emitters and new photocatalytic reactions making use of the Janus-type properties of the developed complex.
Daniel Yero, Mireia Díaz-Lobo, Lionel Costenaro, Oscar Conchillo-Sole, Adrià Mayo, Mario Ferrer-Navarro, Marta Vilaseca, Isidre Gibert, Xavier Daura, 2020
Abstract In Pseudomonas aeruginosa, Ttg2D is the soluble periplasmic phospholipid-binding component of an ABC transport system thought to be involved in maintaining the asymmetry of the outer membrane. The crystallographic structure of Ttg2D at 2.5 Å resolution reveals that this protein can accommodate four acyl chains. Analysis of the available structures of Ttg2D orthologs shows that they conform a new substrate-binding-protein structural cluster. Native and denaturing mass spectrometry experiments confirm that Ttg2D, produced both heterologously and homologously and isolated from the periplasm, can carry two diacyl glycerophospholipids as well as one cardiolipin. Binding is notably promiscuous, allowing the transport of various molecular species. In vitro binding assays coupled to native mass spectrometry show that binding of cardiolipin is spontaneous. Gene knockout experiments in P. aeruginosa multidrug-resistant strains reveal that the Ttg2 system is involved in low-level intrinsic resistance against certain antibiotics that use a lipid-mediated pathway to permeate through membranes.
Jakub Gawryś, Jerzy Wiśniewski, Ewa Szahidewicz-Krupska, Damian Gajecki, Julia Leśniewska, Filip Majda, Karolina Gawryś, Paulina Fortuna, Piotr Mlynarz, Adrian Doroszko, Agata Stanek, Oxidative Medicine and Cellular Longevity, 2020, 1-10, 2020

Background. Antiplatelet therapy has become a standard therapeutic approach in the secondary prevention of cardiovascular system disorders of thrombotic origin. Patients with concomitant diabetes mellitus (DM) obtain fewer benefits from this treatment. Hence, the pathophysiology of altered platelet function in response to glucose metabolism impairment should be of particular interest. Objectives. The aim of our study was to verify if the platelet expression of the asymmetric dimethylarginine (ADMA) in diabetic patients differs in comparison to the nondiabetic ones. The correlation of platelet-ADMA with platelet activation and aggregation as well as with other risk factors was also investigated. Material and Methods. A total of 61 subjects were enrolled in this study, including thirty-one type 2 diabetic subjects without diabetes-related organ damage. Physical examination was followed by blood collection with an assessment of platelet aggregation, traditional biochemical cardiovascular risk factors, and evaluation of nitric oxide bioavailability parameters in plasma and thrombocytes. Subsequently, the assessment of endothelial function using Peripheral Arterial Tonometry and Laser Doppler Flowmetry (LDF) was performed. Results. In the DM group, elevated concentration of intraplatelet ADMA and higher ADMA/SDMA ratio compared to the control group was observed. It was accompanied by higher ADP-mediated platelet aggregation and lower microvascular response to a local thermal stimulus measured by LDF in the diabetes group. Conclusions. Type 2 diabetes is related to higher intraplatelet concentration of asymmetric dimethylarginine (ADMA), which may result in impaired platelet-derived nitric oxide synthesis and subsequent increased platelet activity, as assessed by the ADP-induced aggregation. Laser Doppler Flowmetry, compared to EndoPAT 2000, appears to be a more sensitive indicator of the impaired microvasculature vasodilation in diabetics without the presence of clinically significant target organ damage.

Nankun Qin, Yue Jiang, Wenjun Shi, Liting Wang, Lingbo Kong, Chengxiang Wang, Yuying Guo, Jiayu Zhang, Qun Ma, Evidence-Based Complementary and Alternative Medicine, 2021, 1-15, 2021
Hyperuricemia (HUA) as a metabolic disease is closely associated with metabolic disorders. The etiology and pathogenesis of HUA are not fully understood, so there is no radical cure so far. Metabolomics, a specialized study of endogenous small molecule substances, has become a powerful tool for metabolic pathway analysis of selected differential metabolites, which is helpful for initially revealing possible development mechanisms of various human diseases. Twenty HUA patients and 20 healthy individuals participated in the experiment, and ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was employed to investigate serum samples to find differential metabolites. The statistical techniques used were principal component analysis and orthogonal partial least-squares discriminant analysis. The differences in metabolomics results of samples after pretreatment with different solvents were compared, 38, 20, 26, 28, 33, 50, and 40 potential differential metabolites were found, respectively, in HUA patient samples, and each group involved different metabolic pathways. Repetitive metabolites were removed, 138 differential metabolites in HUA serum were integrated for analysis, and the human body was affected by 7 metabolic pathways of glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and α-linolenic acid metabolism. In this work, the metabolomics approach based on UPLC-Q-TOF/MS was employed to investigate serum metabolic changes in HUA patients, 138 potential differential metabolites related to HUA were identified, which provided associations of lipids, amino acids, fatty acids, organic acids, and nucleosides profiles of HUA individuals. Metabolic pathways involved in glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, linoleic acid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and a-linolenic acid metabolism shed light on the understanding of the etiology and pathogenesis process of HUA.
Mohammad M. Al-Sanea, PeerJ, 8, e8649, 2020
Background CDK8/CycC complex has kinase activity towards the carboxyterminal domain of RNA polymerase II, and contributes to the regulation of transcription via association with the mediator complex. Different human malignancies, mainly colorectal and gastric cancers, were produced as a result of overexpression of CDK8/CycC in the mediator complex. Therefore, CDK8/CycC complex represents as a cancer oncogene and it has become a potential target for developing CDK8/CycC modulators. Methods A series of nine 4-phenylaminoquinoline scaffold-based compounds 5a-i was synthesized, and biologically evaluated as potential CDK8/CycC complex inhibitors. Results The scaffold substituent effects on the intrinsic inhibitory activity toward CDK8/CycC complex are addressed trying to present a novel outlook of CDK8/CycC Complex inhibitors with 4-phenylaminoquinoline scaffold in cancer therapy. The secondary benzenesulfonamide analogues proved to be the most potent compounds in suppressing CDK8/CycC enzyme, whereas, their primary benzenesulfonamide analogues showed inferior activity. Moreover, the benzene reversed sulfonamide analogues were totally inactive. Discussion The titled scaffold showed promising inhibitory activity data and there is a crucial role of un/substituted sulfonamido group for CDK8/CycC complex inhibitory activity. Compound 5d showed submicromolar potency against CDK8/CycC (IC50 = 0.639 µM) and it can be used for further investigations and to design another larger library of phenylaminoquinoline scaffold-based analogues in order to establish detailed SARs.
Shanshan Wu, Tam T.T.N. Nguyen, Olga V. Moroz, Johan P. Turkenburg, Jens E. Nielsen, Keith S. Wilson, Kasper D. Rand, Kaare Teilum, PeerJ, 8, e9408, 2020
Background Several examples have emerged of enzymes where slow conformational changes are of key importance for function and where low populated conformations in the resting enzyme resemble the conformations of intermediate states in the catalytic process. Previous work on the subtilisin protease, Savinase, from Bacillus lentus by NMR spectroscopy suggested that this enzyme undergoes slow conformational dynamics around the substrate binding site. However, the functional importance of such dynamics is unknown. Methods Here we have probed the conformational heterogeneity in Savinase by following the temperature dependent chemical shift changes. In addition, we have measured changes in the local stability of the enzyme when the inhibitor phenylmethylsulfonyl fluoride is bound using hydrogen-deuterium exchange mass spectrometry (HDX-MS). Finally, we have used X-ray crystallography to compare electron densities collected at cryogenic and ambient temperatures and searched for possible low populated alternative conformations in the crystals. Results The NMR temperature titration shows that Savinase is most flexible around the active site, but no distinct alternative states could be identified. The HDX shows that modification of Savinase with inhibitor has very little impact on the stability of hydrogen bonds and solvent accessibility of the backbone. The most pronounced structural heterogeneities detected in the diffraction data are limited to alternative side-chain rotamers and a short peptide segment that has an alternative main-chain conformation in the crystal at cryo conditions. Collectively, our data show that there is very little structural heterogeneity in the resting state of Savinase and hence that Savinase does not rely on conformational selection to drive the catalytic process.
Arthur Burgardt, Ayham Moustafa, Marcus Persicke, Jens Sproß, Thomas Patschkowski, Joe Max Risse, Petra Peters-Wendisch, Jin-Ho Lee, Volker F. Wendisch, Frontiers in Bioengineering and Biotechnology, 9, 2021
Coenzyme Q10 (CoQ10) serves as an electron carrier in aerobic respiration and has become an interesting target for biotechnological production due to its antioxidative effect and benefits in supplementation to patients with various diseases. For the microbial production, so far only bacteria have been used that naturally synthesize CoQ10 or a related CoQ species. Since the whole pathway involves many enzymatic steps and has not been fully elucidated yet, the set of genes required for transfer of CoQ10 synthesis to a bacterium not naturally synthesizing CoQ species remained unknown. Here, we established CoQ10 biosynthesis in the non-ubiquinone-containing Gram-positive Corynebacterium glutamicum by metabolic engineering. CoQ10 biosynthesis involves prenylation and, thus, requires farnesyl diphosphate as precursor. A carotenoid-deficient strain was engineered to synthesize an increased supply of the precursor molecule farnesyl diphosphate. Increased farnesyl diphosphate supply was demonstrated indirectly by increased conversion to amorpha-4,11-diene. To provide the first CoQ10 precursor decaprenyl diphosphate (DPP) from farnesyl diphosphate, DPP synthase gene ddsA from Paracoccus denitrificans was expressed. Improved supply of the second CoQ10 precursor, para-hydroxybenzoate (pHBA), resulted from metabolic engineering of the shikimate pathway. Prenylation of pHBA with DPP and subsequent decarboxylation, hydroxylation, and methylation reactions to yield CoQ10 was achieved by expression of ubi genes from Escherichia coli. CoQ10 biosynthesis was demonstrated in shake-flask cultivation and verified by liquid chromatography mass spectrometry analysis. To the best of our knowledge, this is the first report of CoQ10 production in a non-ubiquinone-containing bacterium.
Thora Bjorg Sigmarsdottir, Sarah McGarrity, James T. Yurkovich, Óttar Rolfsson, Ólafur Eysteinn Sigurjónsson, Frontiers in Cell and Developmental Biology, 9, 2021
Since their initial discovery in 1976, mesenchymal stem cells (MSCs) have been gathering interest as a possible tool to further the development and enhancement of various therapeutics within regenerative medicine. However, our current understanding of both metabolic function and existing differences within the varying cell lineages (e.g., cells in either osteogenesis or adipogenesis) is severely lacking making it more difficult to fully realize the therapeutic potential of MSCs. Here, we reconstruct the MSC metabolic network to understand the activity of various metabolic pathways and compare their usage under different conditions and use these models to perform experimental design. We present three new genome-scale metabolic models (GEMs) each representing a different MSC lineage (proliferation, osteogenesis, and adipogenesis) that are biologically feasible and have distinctive cell lineage characteristics that can be used to explore metabolic function and increase our understanding of these phenotypes. We present the most distinctive differences between these lineages when it comes to enriched metabolic subsystems and propose a possible osteogenic enhancer. Taken together, we hope these mechanistic models will aid in the understanding and therapeutic potential of MSCs.
Rebecca Beveridge, Antonio N. Calabrese, Frontiers in Chemistry, 9, 2021
Intrinsically disordered proteins (IDPs) and regions of intrinsic disorder (IDRs) are abundant in proteomes and are essential for many biological processes. Thus, they are often implicated in disease mechanisms, including neurodegeneration and cancer. The flexible nature of IDPs and IDRs provides many advantages, including (but not limited to) overcoming steric restrictions in binding, facilitating posttranslational modifications, and achieving high binding specificity with low affinity. IDPs adopt a heterogeneous structural ensemble, in contrast to typical folded proteins, making it challenging to interrogate their structure using conventional tools. Structural mass spectrometry (MS) methods are playing an increasingly important role in characterizing the structure and function of IDPs and IDRs, enabled by advances in the design of instrumentation and the development of new workflows, including in native MS, ion mobility MS, top-down MS, hydrogen-deuterium exchange MS, crosslinking MS, and covalent labeling. Here, we describe the advantages of these methods that make them ideal to study IDPs and highlight recent applications where these tools have underpinned new insights into IDP structure and function that would be difficult to elucidate using other methods.
Tanya Clements, Marina Rautenbach, Thando Ndlovu, Sehaam Khan, Wesaal Khan, Frontiers in Chemistry, 9, 2021
An integrated approach that combines reverse-phase high-performance liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry, untargeted ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MSE) and molecular networking (using the Global Natural Products Social molecular network platform) was used to elucidate the metabolic profiles and chemical structures of the secondary metabolites produced by pigmented (P1) and non-pigmented (NP1) Serratia marcescens (S. marcescens) strains. Tandem mass spectrometry-based molecular networking guided the structural elucidation of 18 compounds for the P1 strain (including 6 serratamolides, 10 glucosamine derivatives, prodigiosin and serratiochelin A) and 15 compounds for the NP1 strain (including 8 serratamolides, 6 glucosamine derivatives and serratiochelin A) using the MSE fragmentation profiles. The serratamolide homologues were comprised of a peptide moiety of two L-serine residues (cyclic or open-ring) linked to two fatty acid chains (lengths of C10, C12, or C12:1). Moreover, the putative structure of a novel open-ring serratamolide homologue was described. The glucosamine derivative homologues (i.e., N-butylglucosamine ester derivatives) consisted of four residues, including glucose/hexose, valine, a fatty acid chain (lengths of C13 – C17 and varying from saturated to unsaturated) and butyric acid. The putative structures of seven novel glucosamine derivative homologues and one glucosamine derivative congener (containing an oxo-hexanoic acid residue instead of a butyric acid residue) were described. Moreover, seven fractions collected during RP-HPLC, with major molecular ions corresponding to prodigiosin, serratamolides (A, B, and C), and glucosamine derivatives (A, C, and E), displayed antimicrobial activity against a clinical Enterococcus faecalis S1 strain using the disc diffusion assay. The minimum inhibitory and bactericidal concentration assays however, revealed that prodigiosin exhibited the greatest antimicrobial potency, followed by glucosamine derivative A and then the serratamolides (A, B, and C). These results provide crucial insight into the secondary metabolic profiles of pigmented and non-pigmented S. marcescens strains and confirms that S. marcescens strains are a promising natural source of novel antimicrobial metabolites.
Alexander Carreño, Manuel Gacitúa, Eduardo Solis-Céspedes, Dayán Páez-Hernández, Wesley B. Swords, Gerald J. Meyer, Marcelo D. Preite, Ivonne Chávez, Andrés Vega, Juan A. Fuentes, Frontiers in Chemistry, 9, 2021
Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) can be used to separate proteins based mainly on their size such as in denaturing gels. Different staining methods have been reported to observe proteins in the gel matrix, where the most used dyes are generally anionic. Anionic dyes allow for interactions with protonated amino acids, retaining the dye in the proteins. Fluorescent staining is an alternative technique considered to be sensitive, safe, and versatile. Some anionic complexes based on d6 transition metals have been used for this purpose, where cationic dyes have been less explored in this context. In this work, we synthesized and characterized a new monocationic rhenium complex fac-[Re(CO)3(deeb)B2]+ (where deeb is 4,4′-bis(ethoxycarbonyl)-2,2′-bpy and B2 is 2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol). We carried out a structural characterization of this complex by MS+, FTIR, 1H NMR, D2O exchange, and HHCOSY. Moreover, we carried out UV-Vis, luminescence, and cyclic voltammetry experiments to understand the effect of ligands on the complex’s electronic structure. We also performed relativistic theoretical calculations using the B3LYP/TZ2P level of theory and R-TDDFT within a dielectric continuum model (COSMO) to better understand electronic transitions and optical properties. We finally assessed the potential of fac-[Re(CO)3(deeb)B2]+ (as well as the precursor fac-Re(CO)3(deeb)Br and the free ligand B2) to stain proteins separated by SDS-PAGE. We found that only fac-[Re(CO)3(deeb)B2]+ proved viable to be directly used as a luminescent dye for proteins, presumably due to its interaction with negatively charged residues in proteins and by weak interactions provided by B2. In addition, fac-[Re(CO)3(deeb)B2]+ seems to interact preferentially with proteins and not with the gel matrix despite the presence of sodium dodecyl sulfate (SDS). In future applications, these alternative cationic complexes might be used alone or in combination with more traditional anionic compounds to generate counterion dye stains to improve the process.
Ida Erngren, Eva Smit, Curt Pettersson, Paco Cárdenas, Mikael Hedeland, Frontiers in Chemistry, 9, 2021
Geodia barretti is a deep-sea marine sponge common in the north Atlantic and waters outside of Norway and Sweden. The sampling and subsequent treatment as well as storage of sponges for metabolomics analyses can be performed in different ways, the most commonly used being freezing (directly upon collection or later) or by storage in solvent, commonly ethanol, followed by freeze-drying. In this study we therefore investigated different sampling protocols and their effects on the detected metabolite profiles in liquid chromatography-mass spectrometry (LC-MS) using an untargeted metabolomics approach. Sponges (G. barretti) were collected outside the Swedish west coast and pieces from three sponge specimens were either flash frozen in liquid nitrogen, frozen later after the collection cruise, stored in ethanol or stored in methanol. The storage solvents as well as the actual sponge pieces were analyzed, all samples were analyzed with hydrophilic interaction liquid chromatography as well as reversed phase liquid chromatography with high resolution mass spectrometry using full-scan in positive and negative ionization mode. The data were evaluated using multivariate data analysis. The highest metabolite intensities were found in the frozen samples (flash frozen and frozen after sampling cruise) as well as in the storage solvents (methanol and ethanol). Metabolites extracted from the sponge pieces that had been stored in solvent were found in very low intensity, since the majority of metabolites were extracted to the solvents to a high degree. The exception being larger peptides and some lipids. The lowest variation between replicates were found in the flash frozen samples. In conclusion, the preferred method for sampling of sponges for metabolomics was found to be immediate freezing in liquid nitrogen. However, freezing the sponge samples after some time proved to be a reliable method as well, albeit with higher variation between the replicates. The study highlights the importance of saving ethanol extracts after preservation of specimens for biology studies; these valuable extracts could be further used in studies of natural products, chemosystematics or metabolomics.
Leandro do Prado Assunção, Dayane Moraes, Lucas Weba Soares, Mirelle Garcia Silva-Bailão, Janaina Gomes de Siqueira, Lilian Cristiane Baeza, Sônia Nair Báo, Célia Maria de Almeida Soares, Alexandre Melo Bailão, Frontiers in Cellular and Infection Microbiology, 10, 2020
Histoplasma capsulatum is a thermodimorphic fungus that causes histoplasmosis, a mycosis of global incidence. The disease is prevalent in temperate and tropical regions such as North America, South America, Europe, and Asia. It is known that during infection macrophages restrict Zn availability to H. capsulatum as a microbicidal mechanism. In this way the present work aimed to study the response of H. capsulatum to zinc deprivation. In silico analyses showed that H. capsulatum has eight genes related to zinc homeostasis ranging from transcription factors to CDF and ZIP family transporters. The transcriptional levels of ZAP1, ZRT1, and ZRT2 were induced under zinc-limiting conditions. The decrease in Zn availability increases fungicidal macrophage activity. Proteomics analysis during zinc deprivation at 24 and 48 h showed 265 proteins differentially expressed at 24 h and 68 at 48 h. Proteins related to energy production pathways, oxidative stress, and cell wall remodeling were regulated. The data also suggested that low metal availability increases the chitin and glycan content in fungal cell wall that results in smoother cell surface. Metal restriction also induces oxidative stress triggered, at least in part, by reduction in pyridoxin synthesis.
Lien De Caluwé, Sandra Coppens, Katleen Vereecken, Simon Daled, Maarten Dhaenens, Xaveer Van Ostade, Dieter Deforce, Kevin K. Ariën, Koen Bartholomeeusen, Frontiers in Microbiology, 12, 2021
Chikungunya virus (CHIKV) is an arbovirus with a global spread and significant public health impact. It is a positive stranded RNA alphavirus belonging to the Togaviridae family. However, many questions about the replication cycle of CHIKV remain unanswered. The entry process of CHIKV is not completely understood nor are the associated virus-receptor interactions fully identified. Here, we designed an affinity purification mass spectrometry coupled approach that allowed the identification of factors that facilitate entry of CHIKV in human cells. The identified entry factors were further validated using CRISPR/Cas9. In HEK293T cells we identified the CD147 protein complex as an entry factor for CHIKV. We further showed the involvement of the CD147 protein complex in the replication cycle of related alphaviruses. Interestingly, CD147 contains similar protein domains as the previously identified alphavirus entry factor MXRA8.
Tianwei Shen, Kelly M. Hines, Nathaniel K. Ashford, Brian J. Werth, Libin Xu, Frontiers in Molecular Biosciences, 8, 2021
It has been suggested that daptomycin can be inactivated by lipids released by Staphylococcus aureus and that this effect is antagonized by phenol soluble modulins (PSMs), which bind to the shed lipids. PSM production is regulated by the Agr system, and others have shown that loss of the Agr function enhances S. aureus survival in the presence of daptomycin. Here we assessed the impact of Agr function on daptomycin activity and lipid metabolism under various conditions. Daptomycin activity was evaluated against three sets of isogenic strain series with wild-type or dysfunctional Agr using static daptomycin time-kills over 24 h and against one strain pair using in vitro pharmacokinetic/pharmacodynamic (PK/PD) models simulating clinical daptomycin exposure for 48 h. We performed comprehensive lipidomics on bacterial membranes and the spent media to correlate lipid shedding with survival. In static time-kill experiments, two agr-deficient strains (SH1000- and USA300 LAC ΔagrA) showed improved survival for 8 h compared with their corresponding wild-type strains as seen in previous studies, but this difference did not persist for 24 h. However, four other agr-deficient strains (SH1001 and JE2 agr KOs) did not demonstrate improved survival compared to isogenic wild-type strains at any time in the time-kills. Lipidomics analysis of SH1000, SH1001, and SH1000- strains showed daptomycin exposure increased lipid shedding compared to growth controls in all strains with phosphatidylglycerols (PGs), lysylPGs and cardiolipins predominating. In the cell pellets, PGs and lysylPGs decreased but cardiolipins were unchanged with daptomycin exposure. The shed lipid profiles in SH1001 and SH1000- were similar, suggesting that the inability to resist daptomycin by SH1001 was not because of differences in lipid shedding. In the PK/PD model, the agr mutant SH1000- strain did not show improved survival relative to SH1000 either. In conclusion, inactivation of daptomycin by shed lipids may be dependent on genetic background, the specific agr mutations, or the techniques used to generate these KOs rather than the overall function of the Agr system, and its contribution to daptomycin tolerance seems to be varied, transient, and growth-condition dependent.
Florence M. Mashitoa, Tinotenda Shoko, Jerry L. Shai, Retha M. Slabbert, Yasmina Sultanbawa, Dharini Sivakumar, Frontiers in Nutrition, 8, 2021
Leaves of pumpkin species var. Butternut squash (Cucurbita moschata Duchesne ex Poir) is a popularly consumed leafy vegetable in the Southern African region. Traditional vegetables are commonly sun-dried as a method of postharvest preservation during the off-season. However, different drying methods affect the superior quality, functional properties, and bioactivities of the final product. Therefore, in this study, var. Butternut squash (C. moschata) underwent different drying methods, such as freeze-, oven, sun-, solar, and microwave drying to evaluate the color properties, pigments, phenolic metabolites, in vitro antioxidants, and antidiabetic activities. Results indicate that freeze-drying retained the total chlorophyll content with green color by reducing the color difference (ΔE), improved the concentration of different phenolic metabolites and the content of ascorbic acid, and enhanced the FRAP, ABTS activities and the inhibitory effects of α-glucosidase, and α-amylase. Freeze-dried leaves contained the highest concentrations of quercetin 3-glucoside 7-rhamnoside (rutin), quercetin 3-galactoside, isorhamnetin-3-galactoside-6″-rhamnoside, isorhamnetin-3-O-rutinoside compared with the leaves that underwent four other drying treatments and raw leaves. The OPLS-DA and the UPLC–QTOF/MS and chemometric approach showed that the peak at m/z 609, 1441 (quercetin 3-galactoside 7-rhamnoside) separated the freeze-dried leaves of var. Butternut squash (C. moschata) from the other four drying treatments. Therefore, freeze-drying is highly recommended to obtain good quality leaf powders that are rich in functional compounds and bioactive properties for use as functional ingredients.
Laura Buyssens, Laura De Clerck, Wim Schelstraete, Maarten Dhaenens, Dieter Deforce, Miriam Ayuso, Chris Van Ginneken, Steven Van Cruchten, Frontiers in Pharmacology, 12, 2021
The Göttingen Minipig is gaining ground as nonrodent species in safety testing of drugs for pediatric indications. Due to developmental changes in pharmacokinetics and pharmacodynamics, physiologically based pharmacokinetic (PBPK) models are built to better predict drug exposure in children and to aid species selection for nonclinical safety studies. These PBPK models require high quality physiological and ADME data such as protein abundance of drug metabolizing enzymes. These data are available for man and rat, but scarce for the Göttingen Minipig. The aim of this study was to assess hepatic cytochrome P450 (CYP) protein abundance in the developing Göttingen Minipig by using mass spectrometry. In addition, sex-related differences in CYP protein abundance and correlation of CYP enzyme activity with CYP protein abundance were assessed. The following age groups were included: gestational day (GD) 84–86 (n = 8), GD 108 (n = 6), postnatal day (PND) 1 (n = 8), PND 3 (n = 8), PND 7 (n = 8), PND 28 (n = 8) and adult (n = 8). Liver microsomes were extracted and protein abundance was compared to that in adult animals. Next, the CYP protein abundance was correlated to CYP enzyme activity in the same biological samples. In general, CYP protein abundance gradually increased during development. However, we observed a stable protein expression over time for CYP4A24 and CYP20A1 and for CYP51A1, a high protein expression during the fetal stages was followed by a decrease during the first month of life and an increase toward adulthood. Sex-related differences were observed for CYP4V2_2a and CYP20A1 at PND 1 with highest expression in females for both isoforms. In the adult samples, sex-related differences were detected for CYP1A1, CYP1A2, CYP2A19, CYP2E1_2, CYP3A22, CYP4V2_2a and CYP4V2_2b with higher values in female compared to male Göttingen Minipigs. The correlation analysis between CYP protein abundance and CYP enzyme activity showed that CYP3A22 protein abundance correlated clearly with the metabolism of midazolam at PND 7. These data are remarkably comparable to human data and provide a valuable step forward in the construction of a neonatal and juvenile Göttingen Minipig PBPK model.
Only abstracts that are published under https://creativecommons.org/licenses/by/4.0/ are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Waters Synapt in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.