Veeco Dimension
Selling the Veeco Dimension?
Sign UpCan‘t find Veeco Dimension offers?
Post a requestDescription
atomic force microscope, atomic force microscope
This model was found at
460 locations
The model is used in
36 countries
Usage per year (up to 2020)
Loading histogram...
92 related research fields
Loading pie chart...
About the Veeco Dimension
The model Veeco Dimension was found in 460 unique locations in 36 countries where it was mentioned from 2003 until recently. It is used by scientists in various research fields such as General Materials Science, General Chemistry, General Physics and Astronomy, Condensed Matter Physics, and Bioengineering. The model is also used in Biomedical Engineering, Mechanical Engineering, Biomaterials, Surfaces and Interfaces, Electrical and Electronic Engineering, Mechanics of Materials, Polymers and Plastics, General Biochemistry, Genetics and Molecular Biology, Materials Chemistry, Biochemistry, Biotechnology, Surfaces, Coatings and Films, General Engineering, Physical and Theoretical Chemistry, General Chemical Engineering, Analytical Chemistry, Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials, Physics and Astronomy (miscellaneous), Spectroscopy, Electrochemistry, Instrumentation, Biophysics, Pharmaceutical Science, and General Medicine.Loading map...
Research that uses the Veeco Dimension
The general rule that viscosity slows droplet motion fails for a droplet in a superhydrophobic tube closed in one or both ends.
Continuous uniform <2-nm refractory catalyst production is realized for selective chiral SWCNT growth.
We report on the microelectronic characteristics of a novel hybrid heterojunction device based on a solution processable semiconducting polymer poly(9,9-dioctylfluorenyl-2,7-diyl)- co-(N,N0-diphenyl)-N,N′di(p-butyl-oxy-pheyl)-1,4-diamino-benzene) (PFB) and p-type silicon (p-Si). The PFB/p-Si heterojunction is prepared by spin coating 20 mg/mL solution of PFB in chloroform on the precleaned polished surface of p-Si substrate. Thermal evaporation of silver (Ag) electrode on top of PFB completes the fabrication of the Ag (90 nm)/PFB (180 nm)/p-Si heterojunction device. Morphology of PFB thin film is studied by using an atomic force microscope (AFM) and scanning electron microscope (SEM), which reveals grains are randomly distributed with slightly different grain sizes and shapes. It leads the film to form nonuniformity and some roughness in its topography that results in limiting the current (I) flow across the film/interface with p-Si. Ultraviolet (UV–vis) absorption and X-ray diffraction (XRD) spectra are measured for optical bandgap and crystal structure analysis of PFB. The key microelectronic parameters—rectification ratio (RR), ideality factor (n), barrier height (Φb), series resistance (Rs) and reverse saturation current (I0)—of the Ag/PFB/p-Si heterojunction are found from current–voltage (I–V) characteristics at room temperature (300 K) in dark conditions (≈0 lux). The Ag/PFB/p-Si heterojunction device exhibits improved microelectronic parameters when compared to those of earlier reported devices that were prepared in the same configuration. This improvement in the device parameters reveals enhancement in the microelectronic properties across the interface/depletion region of the Ag/PFB/p-Si device, which can be attributed to the remarkable electronic properties of PFB such as its relatively high hole mobility and better charge carriers’ conduction. The charge transport mechanisms through the device is also studied. Having the smaller values of I0 ≈ 7 × 10−10 A and n ≈ 3.23, as well as higher shunt resistance (Rsh) of 32 GΩ for the Ag/PFB/p-Si device suggest its potential for many electronic and optoelectronic applications.
The aim of the presented investigations was to deposit the thin films La1−xSrxFeO3 (x = 0, 0.1, 0.2) on (100) Si substrate by using the Pulsed Laser Deposition (PLD) method. Structure was exanimated by using XRD, SEM, AFM, TEM and XPS methods. The catalytic properties were analyzed in 4 ppm acetone atmosphere. The doping of Sr thin films La1−xSrxFeO3 (x = 0, 0.1, 0.2) resulted in a decrease in the size of the crystallites, the volume of the elemental cell and change in the grain morphology. In the LaFeO3 and La0.9Sr0.1FeO3, clusters around which small grains grow are visible in the structure, while in the layer La0.8Sr0.2FeO3, the visible grains are elongated. The TEM analysis has shown that the obtained thin films had a thickness in the range 150–170 nm with triangular or flat column ends. The experiment performed in the presence of gases allowed us to conclude that the surfaces (101/020) in the triangle-shaped columns and the plane (121/200) faces in flat columns were exposed to gases. The best properties in the presence of CH3COCH3 gas were noted for LaFeO3 thin film with triangle columns ending with orientation (101/020).
We investigated copper electrodes deposited onto a BaZr0.7Ce0.2Y0.1O3-δ (BZCY72) proton-conducting membrane via a novel electroless plating method, which resulted in significantly improved performance when compared to a traditional painted copper electrode. The increased performance was examined with a multiscale multitechnique characterization method including time-of-flight secondary-ion mass spectroscopy (TOF-SIMS), transmission electron microscopy (TEM), scanning spreading-resistance microscopy (SSRM), and atom-probe tomography (APT). Through this method, we observed that a palladium catalyst layer alloys with the copper electrode. We also explored the nature of a non-coking-induced carbon-rich phase that may be involved with the improved performance of the electrode.
Nitrogen-doped TiO2 films were prepared by reactive ion-beam sputtering deposition (IBSD) in a mixed atmosphere of NH3 and O2 at a substrate temperature of 400 °C. X-ray photoelectron spectra revealed the presence of six ions, i.e., N3−, N2−, N1−, N+, N2+, and N3+, respectively, in the films. The amorphous films had complex, randomly oriented chemical bonds. The Tauc–Lorentz model was employed to determine the bandgap energy of the amorphous films prepared using different NH3/O2 gas mixing ratios by ellipsometry. In addition, the optical constants of the films were measured. With the increase in the NH3/O2 gas mixture ratio to 3.0, the bandgap of N-doped TiO2 narrowed to ~2.54 eV.
Corrosion is a severe problem for steel structures in humid environments. In particular, humidity usually triggers the surface adhesion of microorganisms, leading to microbiologically induced corrosion. This study aims to explore the effect of bacterial biofilm formation on the pitting corrosion of stainless steel. This research uses electrochemical methods to obtain indirect evidence of the pitting corrosion of steel. In addition, in order to obtain direct evidence of the pitting corrosion of stainless steel, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the dimensional morphology of the stainless steel after pitting. It was shown that the bacterial adhesion increased with the pH and temperature, which significantly increased the surface roughness of the stainless steel. Electrochemical analysis revealed that the formation of biofilm greatly destroyed the oxide film of 304 SS and accelerated the corrosion of stainless steel by forming an oxygen concentration battery. SEM and AFM analyses showed cracks and dislocations on the surface of stainless steel underneath the attached bacteria, which suggested a direct role of biofilm in corrosion induction. The results presented here show that the bacterial biofilm formation on the steel surfaces significantly accelerated the corrosion and affected the pitting corrosion process of the steel structure.
In this study, we introduced a novel environmentally-friendly electrolyte consisting of polytetrafluoroethylene (PTFE) nanoparticles and malic acid solution to fabricate composite anodic film on Ti-10V-2Fe-3Al alloy at different electrolyte temperatures. The morphology revealed that the PTFE nanoparticles were successfully incorporated into composite anodic films and embedded preferentially in the pores and cracks. Their performances (wear, corrosion and hydrophobicity) were evaluated via electrochemical tests, ball on disc tests, and a contact angle (CA) meter. Compared to the substrate of titanium alloy Ti-10V-2Fe-3Al, the composite anodic films exhibited the low wear rates, high corrosion resistance and good hydrophobicity. However, the microstructure and morphology of the films were affected by the electrolyte temperature. As a result, their performances were changed greatly as a function of the temperature and the film fabricated at 20 °C exhibited better performances (CA = 131.95, icorr = 6.75 × 10−8 A·cm−2, friction coefficient = 0.14) than those at other electrolyte temperatures. In addition, the corresponding lubrication mechanism of the composite anodic films was discussed.
Starch-based films with phenolic extracts could replace the use of petroleum-based plastics. In this study, octenyl succinate starch (OSS) films with pecan nutshell extract (PSE) or hazelnut skin extract (HSE) were prepared. The water resistance, as well as the optical, physical, mechanical, and biodegradable properties of these films, were investigated. The PSE and HSE improved the water resistance (decreasing the solubility to 17% and increasing the contact angle to 96.80°) and UV-light barrier properties of the films. For PSE and HSE, as their concentrations increased, the film rigidity decreased since these extracts acted as plasticizers. Micrographs obtained by scanning electron microscopy (SEM) depicted a homogeneous surface as a result of extracts dispersion through the polymeric matrix and the interactions between the phenolic compounds (PC) of the extracts and the OSS. The phenolic extracts from nut by-products and octenyl succinic anhydride (OSA) starch could be used to develop films to replace the conventional plastics.
Detonation nanodiamond is a commercially available synthetic diamond that is obtained from the carbon of explosives. It is known that the average particle size of detonation nanodiamond is 4–6 nm. However, it is possible to separate smaller particles. Here we suggest a new approach for the effective separation of detonation nanodiamond particles by centrifugation of a “hydrosol/glycerol” system. The method allows for the production of the detonation nanodiamond hydrosol with a very sharp distribution in size, where more than 85% of particles have a size ranging 1–4 nm. The result is supported by transmission electron microscopy, atomic force microscopy, and dynamic light scattering.
Utilising dislocation-related vertical etching channels in gallium nitride, we have previously demonstrated a simple electrochemical etching (ECE) process that can create layered porous GaN structures to form distributed Bragg reflectors for visible light at wafer scale. Here, we apply the same ECE process to realise AlGaN-based ultraviolet distributed Bragg reflectors (DBRs). These are of interest because they could provide a pathway to non-absorbing UV reflectors to enhance the performance of UV LEDs, which currently have extremely low efficiency. We have demonstrated porous AlGaN-based UV DBRs with a peak reflectance of 89% at 324 nm. The uniformity of these devices is currently low, as the as-grown material has a high density of V-pits and these alter the etching process. However, our results indicate that if the material growth is optimised, the ECE process will be useful for the fabrication of UV reflectors.
Thermochromic tungsten-doped VO2 thin films were successfully fabricated using a W-V alloy target. X-ray diffraction analyses showed that the W-doped VO2 film had a preferred orientation of (011), and that the doping did not degrade the film crystallinity compared with that of the pure film. X-ray photoelectron spectroscopy and energy-dispersive spectroscopy showed that the doped 0.81 atom% tungsten replaced vanadium in the lattice of the film. The metal–insulator transition temperature of the W-doped VO2 film was reduced to 35.5 °C, which is close to room temperature. Additionally, the infrared transmittance modulation of the W-doped film at λ = 2500 nm reached 56%, indicating an excellent switching efficiency. The damage behavior of the W-doped VO2 film under a femtosecond-laser irradiation was experimentally investigated. Our results revealed that defect-related damages induced by the femtosecond laser are relevant for W-doped VO2 films. This study provides valuable insights into VO2 films for potential applications in laser protection.
A new structural fluorine-containing methacrylate monomer CH2=C(CH3)COOC–(CF3)2CF2CF2CF3 (5) was synthesized derived from perfluoro-2-methyl-2-pentene (D2). A homopolymer of 5 and copolymers of 5 and methacrylate with different alkyl chain length (chain length n = 1, 2, 4, 6, 8, 12, 18) were obtained. These new fluorinated acrylate polymers showed excellent water and oil repellency. The contact angle of the films of the homopolymer and part of the copolymers were similar with the corresponding polymers prepared from CH2=CHC(O)OCH(C3F7)(CF(CF3)2), but greater than that of the C6F13(CF3)CHOC(O)CH=CH2 homopolymer. The structure-property relationship research indicated that the copolymers’ hydrophobicity decreased first and then increased with the increase of alkyl chain length. Td of all the polymers were greater than 220 °C and Tg fluctuated within the range of −51~103.8 °C. Contact angle and Tg could be adjusted by controlling the feed ratio of monomer to meet the requirements of technical indicators in the practical applications. The outstanding liquid repellency and thermal stability make monomer 5 a promising alternative to perfluorinated long-chain fluorosurfactants.
: Conductive atomic force microscopy (CAFM) is one of the most powerful techniques in studying the electrical properties of various materials at the nanoscale. However, understanding current fluctuations within one study (due to degradation of the probe tips) and from one study to another (due to the use of probe tips with different characteristics), are still two major problems that may drive CAFM researchers to extract wrong conclusions. In this manuscript, these two issues are statistically analyzed by collecting experimental CAFM data and processing them using two different computational models. Our study indicates that: (i) before their complete degradation, CAFM tips show a stable state with degraded conductance, which is difficult to detect and it requires CAFM tip conductivity characterization before and after the CAFM experiments; and (ii) CAFM tips with low spring constants may unavoidably lead to the presence of a ~1.2 nm thick water film at the tip/sample junction, even if the maximum contact force allowed by the setup is applied. These two phenomena can easily drive CAFM users to overestimate the properties of the samples under test (e.g., oxide thickness). Our study can help researchers to better understand the current shifts that were observed during their CAFM experiments, as well as which probe tip to use and how it degrades. Ultimately, this work may contribute to enhancing the reliability of CAFM investigations.
We report an excellent growth behavior of a high-κ dielectric on ReS2, a two-dimensional (2D) transition metal dichalcogenide (TMD). The atomic layer deposition (ALD) of an Al2O3 thin film on the UV-Ozone pretreated surface of ReS2 yields a pinhole free and conformal growth. In-situ half-cycle X-ray photoelectron spectroscopy (XPS) was used to monitor the interfacial chemistry and ex-situ atomic force microscopy (AFM) was used to evaluate the surface morphology. A significant enhancement in the uniformity of the Al2O3 thin film was deposited via plasma-enhanced atomic layer deposition (PEALD), while pinhole free Al2O3 was achieved using a UV-Ozone pretreatment. The ReS2 substrate stays intact during all different experiments and processes without any formation of the Re oxide. This work demonstrates that a combination of the ALD process and the formation of weak S–O bonds presents an effective route for a uniform and conformal high-κ dielectric for advanced devices based on 2D materials.
This paper reports swelling behavior of cellulose nanocrystal (CNC)-based polyacrylamide hydrogels prepared by a radical polymerization. The CNC acts as a nanofiller through the formation of complexation and intermolecular interaction. FTIR spectroscopy and XRD studies confirmed the formation of intermolecular bonds between the acrylamide and hydroxyl groups of CNC. The swelling ratio and water retention were studied in de-ionized (DI) water at room temperature, and the temperature effect on the swelling ratio was investigated. Further, the pH effect on the swelling ratio was studied with different temperature levels. Increasing the pH with temperature, the prepared hydrogel shows 6 times higher swelling ratio than the initial condition. The swelling kinetics of the developed hydrogels explains that the diffusion mechanism is Fickian diffusion mechanism. Since the developed hydrogels have good swelling behaviors with respect to pH and temperature, they can be used as smart materials in the field of controlled drug delivery applications.
InGaN quantum wells were grown using metalorganic chemical vapor phase epitaxy (vertical and horizontal types of reactors) on stripes made on GaN substrate. The stripe width was 5, 10, 20, 50, and 100 µm and their height was 4 and 1 µm. InGaN wells grown on stripes made in the direction perpendicular to the off-cut had a rough morphology and, therefore, this azimuth of stripes was not further explored. InGaN wells grown on the stripes made in the direction parallel to the GaN substrate off-cut had a step-flow-like morphology. For these samples (grown at low temperatures), we found out that the InGaN growth rate was higher for the narrower stripes. The higher growth rate induces a higher indium incorporation and a longer wavelength emission in photoluminescence measurements. This phenomenon is very clear for the 4 µm high stripes and less pronounced for the shallower 1 µm high stripes. The dependence of the emission wavelength on the stripe width paves a way to multicolor emitters.
Herein, nano-tribological behaviour of graphene oxide (GO) coatings is evaluated by a combination of nanoscale frictional performance and adhesion, as well as macroscale numerical modelling. A suite of characterisation techniques including atomic force microscopy (AFM) and optical interferometry are used to characterise the coatings at the asperity level. Numerical modelling is employed to consider the effectiveness of the coatings at the conjunction level. The macroscale numerical model reveals suitable deposition conditions for superior GO coatings, as confirmed by the lowest measured friction values. The proposed macroscale numerical model is developed considering both the surface shear strength of asperities of coatings obtained from AFM and the resultant morphology of the depositions obtained from surface measurements. Such a multi-scale approach, comprising numerical and experimental methods to investigate the tribological behaviour of GO tribological films has not been reported hitherto and can be applied to real-world macroscale applications such as the piston ring/cylinder liner conjunction within the modern internal combustion engine.
The capability of graphene-based biosensors used to detect biomolecules, such as DNA and cancer marker, is enormously affected by the quality of graphene. In this work, high quality and cleanness graphene were obtained by CVD based on acetic acid (AA) and ammonium persulfate (AP) pretreated copper foil substrate. Hall effect devices were made by three kinds of graphene which were fabricated by CVD using no-treated copper foil, AA pre-treated copper foil and AP pre-treated copper foil. Hall effect devices made of AA pre-treated copper foil CVD graphene and AP pre-treated copper foil CVD graphene can both enhance the sensitivity of graphene-based biosensors for DNA recognition, but the AA pre-treated copper foil CVD graphene improves more (≈4 times). This may be related to the secondary oxidation of AP pre-treated copper foil in the air due to the strong corrosion of ammonium persulfate, which leads to the quality decrease of graphene comparing to acetic acid. Our research provides an efficient method to improve the sensitivity of graphene-based biosensors for DNA recognition and investigates an effect of copper foil oxidation on the growth graphene.
Due to the possible applications, materials with a wide energy gap are becoming objects of interest for researchers and engineers. In this context, the polycrystalline diamond layers grown by CVD methods on silicon substrates seem to be a promising material for engineering sensing devices. The proper tuning of the deposition parameters allows us to develop the diamond layers with varying crystallinity and defect structure, as was shown by SEM and Raman spectroscopy investigations. The cathodoluminescence (CL) spectroscopy revealed defects located just in the middle of the energy gap of diamonds. The current–voltage–temperature, I−V−T characteristics performed in a broad temperature range of 77–500 K yielded useful information about the electrical conduction in this interesting material. The recorded I−V−T in the forward configuration of the n–Si/p–CVD diamond heterojunction indicated hopping trough defects as the primary mechanism limiting conduction properties. The Ohmic character of the carriers flux permitting throughout heterojunction is intensified by charges released from the depletion layer. The magnification amplitude depends on both the defect density and the probability that biasing voltage is higher than the potential barrier binding the charge. In the present work, a simple model is proposed that describes I−V−T characteristics in a wide range of voltage, even where the current saturation effect occurs.
About QuestPair
QuestPair Analytics inventorises the usage of scientific equipment such as the Veeco Dimension in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.