Shimadzu UV 3600 - at
Shimadzu UV 3600
Selling the Shimadzu UV 3600?
Sign Up
Can‘t find Shimadzu UV 3600 offers?
Post a request
near-infrared spectrophotometer, spectrometer, spectrophotometer, spectrophotometer, spectrophotometer, spectrophotometer, spectrophotometer, double-beam spectrophotometer, double-beam spectrophotometer, spectrometer, double-beam spectrophotometer, spectrophotometer, spectrophotometers, spectrometer, spectrometer, spectrometer, spectrophotometer, spectrophotometer, absorption spectrometer, spectrometer, spectrometer, spectrometer, spectrophotometer
This model was found at
1313 locations
The model is used in
54 countries
Usage per year (up to 2020)
Loading histogram...
123 related research fields
Loading pie chart...

About the Shimadzu UV 3600

The model Shimadzu UV 3600 was found in 1313 unique locations in 54 countries where it was mentioned from 2007 until recentlyIt is used by scientists in various research fields such as General Materials Science, General Chemistry, General Physics and Astronomy, General Chemical Engineering, and Physical and Theoretical Chemistry. The model is also used in Condensed Matter Physics, General Biochemistry, Genetics and Molecular Biology, Catalysis, Biochemistry, Organic Chemistry, Pharmaceutical Science, Analytical Chemistry, Electronic, Optical and Magnetic Materials, Electrical and Electronic Engineering, General Engineering, Molecular Medicine, Bioengineering, Materials Chemistry, Atomic and Molecular Physics, and Optics, Inorganic Chemistry, Drug Discovery, Surfaces, Coatings and Films, Polymers and Plastics, General Medicine, Colloid and Surface Chemistry, Chemistry, Mechanics of Materials, Mechanical Engineering, Biomaterials, and Environmental Chemistry.

About Shimadzu

Shimadzu is a Japanese company founded as early as 1875 in Kyoto (Japan). The organisation manufactures a wide range of precision instruments for research & development and industrial applications. Their line of products includes liquid and gas chromatographs, spectrometers, elemental and surface characterisation systems, high-speed cameras and other analytical instruments. Shimadzu also provides instruments for testing purposes and applies their technology to product development and quality assurance applications.
Loading map...

Research that uses the Shimadzu UV 3600

Yuhang Qi, Jiawei Jiang, Xichen Liang, Shuxin Ouyang, Wenbo Mi, Shangbo Ning, Lei Zhao, Jinhua Ye, 2020
Abstract Photothermocatalytic CO2 reduction as the channel of the energy and environmental issues resolution has captured persistent attention in recent years. In2O3 has been prompted to be a potential photothermal catalyst in this sector on account of unique physicochemical properties. However, different from the metal-based photothermal catalyst with the nature of efficient light-to-thermal conversion and H2 dissociation, the wide-bandgap semiconductor needs to be modified to possess wide-wavelength-range absorption and the active surface. It remains a challenge to achieve the two aims simultaneously via single material modulation approach. In this study, one strategy of carbon doping can empower In2O3 with two advantageous modifications. The carbon doping can reduce the formation energy of oxygen vacancy, which induces the generation of oxygen-vacancy-riched material. The introduction of oxygen defect levels and carbon doping levels in band gap of In2O3 significantly reduces this band gap, which endows it full-spectral and intensive solar light absorption. Therefore, the carbon doped In2O3 achieves effective light-to-thermal conversion and delivers a 123.6 mmol g− 1 h− 1 of CO generation rate with near-unity selectivity, as well as prominent stability in photothermocatalytic CO2 reduction.
Byeong Guk Jeong, Jun Hyuk Chang, Donghyo Hahm, Seunghyun Rhee, Myeongjin Park, Sohoo Lee, Youngdu Kim, Doyoon Shin, Jeong Woo Park, Changhee Lee, Doh C. Lee, Kyoungwon Park, Euyheon Hwang, Wan Ki Bae, 2020
Abstract The potential profile and the energy level offset of core/shell heterostructured nanocrystals (h-NCs) determine the photophysical properties and the charge transport characteristics of h-NC solids. However, limited material choices for heavy metal-free III-V/II-VI h-NCs pose challenges in comprehensive control of the potential profile. Herein, we present an unprecedented approach to such control by steering dipole moments at the interface of III-V/II-VI h-NCs. The controllable heterovalency at the interface is responsible for interfacial dipole moments that result in the vacuum-level shift, providing an additional knob for the control of optical and electrical characteristics of h-NCs. We capitalize on the atomic precision with which to synthesize h-NCs by correlating interfacial dipole moments to photochemical stability and optoelectronic performance of resulting h-NCs.
Amberley D. Stephens, Muhammad Nawaz Qaisrani, Michael T. Ruggiero, Gonzalo Díaz Mirón, Uriel N. Morzan, Mariano C. González Lebrero, Saul T. E. Jones, Emiliano Poli, Andrew D. Bond, Philippa J. Woodhams, Elyse M. Kleist, Luca Grisanti, Ralph Gebauer, J. Axel Zeitler, Dan Credgington, Ali Hassanali, Gabriele S. Kaminski Schierle, Proceedings of the National Academy of Sciences, 118, 2021
Significance Intrinsic fluorescence of nonaromatic amino acids is a puzzling phenomenon with an enormous potential in biophotonic applications. The physical origins of this effect, however, remain elusive. Herein, we demonstrate how specific hydrogen bond networks can modulate fluorescence. We highlight the key role played by short hydrogen bonds, present in the protein structure, on the ensuing fluorescence. We provide detailed experimental and molecular evidence to explain these unusual nonaromatic optical properties. Our findings should benefit the design of novel optically active biomaterials for applications in biosensing and imaging.
Zhiqiang Ou, Qi Zhou, Xin Rao, Haifeng Yang, Chunqing Huo, Xueyu Du, Frontiers in Bioengineering and Biotechnology, 9, 2021
Waste rubber wood (RW) is the castoff of rubber plantation with abundant reservation but without high-value utilization. In this study, cellulose with high purity has been efficiently isolated from waste RW and further processed into cellulose nanocrystals. By means of acetylation, more hydrophobic cellulose-based products, namely acetylated rubber wood cellulose (Ac–RWC) and acetylated rubber wood cellulose nanocrystals (Ac–RW–CNC) had been attempted as reinforcing fillers for fabricating two series of PLA-based composite films via spin coating instead of currently prevailing melt compounding technique. To ensure a uniformed dispersion of fillers in PLA matrix, the addition of reinforcing filler should be equal to or less than 5% based on the film dry weight. Compared with pure PLA film, the Ac–RWC reinforced PLA composite films are more thermally stable, while the Ac–RW–CNC reinforced PLA composite films on the other hand exhibit more enhanced performance in mechanical properties and the degree of crystallinity. The highest tensile strength (55.0 MPa) and Young’s modulus (3.9 GPa) were achieved for 5%Ac–RW–CNC/PLA composite film.
Xiaoxia Cui, Yantao Xu, Shengfei She, Xusheng Xiao, Chaoqi Hou, Haitao Guo, Frontiers in Physics, 9, 2021
Ligand-free BaF2:Nd nanoparticles (NPs) with a size of 10 nm were fabricated by a novel synthetic route in the liquid phase. A transparent dispersion of the BaF2:Nd NPs mixed with propanetriol and DMSO-d6 was done. Highly stable and outstanding near-infrared (NIR) fluorescence centered at 1,058 nm was detected using an excitation wavelength of 808 nm laser. Moreover, the dispersion can be found to be stable for over 1 month, and the cytotoxicity of the BaF2:Nd NP dispersion has also been studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The superior performance of these NPs exhibits their great potential application in high-contrast and high-penetration in vivo imaging.
Temesgen Geremew, Tizazu Abza, Advances in Materials Science and Engineering, 2020, 1-11, 2020
ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. The single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. The XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. The ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. The CdS/ZnS heterojunction thin film is nearly amorphous. The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. The CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 10 15 1/s. The optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. The surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. The EDX result confirmed nearly 1 : 1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.
H. M. S. P. Randiligama, M. M. M. G. P. G. Mantilaka, T. C. Palihawadana, Journal of Nanomaterials, 2020, 1-10, 2020
Nanospherical and plate-like magnesium oxide has been successfully synthesized by urea precipitation method for the first time. A magnesium oxide precursor was prepared by heating MgCl2 solution with urea for 12 hours at 90°C. Then the calcined precursor was analysed by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and high-resolution transmission electron microscopy (HR-TEM). In the presence of the nonionic surfactant Triton X-100 in the system, the reaction yielded in nanospheres of MgO contrast to the plate-like MgO in the absence of the surfactant. The precursor and the calcined product appeared in similar morphologies under SEM in both cases with a slight reduction of size upon calcination. The final product was confirmed as MgO using XRD and FT-IR spectroscopic methods. In TGA, both samples showed similar mass loss values upon elimination of adsorbed water molecules and decomposition of the precursor into MgO; however, the nanospherical MgO sample showed an additional weight loss due to elimination of the associated surfactant molecules. The efficiency of removing reactive dye wastes was quantified by UV-visible spectroscopy using reactive yellow dye. Plate-like MgO showed a porous structure under HR-TEM analysis in the dye adsorption study, and both plate-like and nanospherical MgO showed good dye adsorption capability. MgO nanospheres showed higher capacity of dye adsorption compared to plate-like MgO, explained by its higher surface are-to-volume ratio, while the plate-like MgO also performed well due to having a nanoporous structure. These nanomaterials will offer high potential in purifying waste water and as well in recovering expensive dye products.
Theint Theint Win, Sikandar Khan, PengCheng Fu, Journal of Nanotechnology, 2020, 1-9, 2020
The scientific consensus is now on developing a biocontrol agent that can cause cellular metabolic reprogramming against agricultural pathogens. Biosynthesis of silver nanoparticles was performed by using phytopathogenic fungi (Alternaria sp.) isolated from banana cultivated soil. Alternaria sp. can grow very fast and produce high enough bioactive compounds. This study aims to biosynthesize silver nanoparticles (AgNPs) using fungal Alternaria sp.’s metabolites as a safe antifungal agent against plant pathogenic fungi (Fusarium spp. and Alternaria sp.). To visualize the formation of AgNPs, analytical instruments were used, such as ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX), and elemental mapping. The UV-visible spectra showed a peak at 435 nm. Analysis of scanning transmission electron microscopy (STEM) micrographs evidenced that the size of synthesized silver nanoparticles ranged between 3 and 10 nm. The resulting AgNPs showed distinct antifungal activity against selected plant pathogenic fungi. Synthesized AgNPs have demonstrated remarkable potential for the use of antifungal compounds to combat plant diseases.
Ladawan Chotirat, Sutham Niyomwas, Witthawat Wongpisan, Sitthisuntorn Supothina, Journal of Nanotechnology, 2021, 1-7, 2021
The vanadium dioxide (VO2) thin films were synthesized by sol-gel dipping on a glass slide substrate at low temperature of 500°C in a vacuum tube furnace at a pressure of 2 × 10−3 mbar by 2-step calcination without an intermediate gas purging. Synthesis conditions, including temperature, vacuum pressure, and calcination steps in the vacuum tube furnace, were investigated to find the optimum condition that promoted the formation of VO2 phase. It was found that the 2nd calcination step was very important in realizing the monoclinic vanadium dioxide (VO2 (M)). The results of the valence electron analysis revealed the outstanding phase of VO2 and a small amount of V2O5 and V2O3 phases. The small crystallites of the VO2 were homogeneously distributed on the surface, and the grain was of an irregular shape of ∼220−380 nm in size. The film’s thickness was in a range of 69−74 nm. The film exhibited a metal-to-insulator transformation temperature of ∼68oC and good thermochromic property. Visible optical transmittance remained at ∼40−50% when the sample’s temperature changed from 25 to 80°C for a near infrared (NIR) region.
Shuhong Xu, Guangguang Huang, Chunlei Wang, Haibao Shao, Yiping Cui, Nanomaterials and Nanotechnology, 10, 184798042092567, 2020
In this work, we improved the photocurrent of self-powered ultraviolet photodetector via doping manganese in CsPbCl3 perovskite nanocrystals light harvester. The doped manganese in nanocrystals has the following three features to assist electron transfer from CsPbCl3 nanocrystals to titanium dioxide: (i) the fast exciton-to-manganese energy transfer process benefits for competing electrons with perovskite exciton recombination, (ii) the charge carrier lifetime is very long for manganese d-states due to its spin and orbital forbidden transition, and (iii) the electrons can effectively transfer to the titanium dioxide layer from 4T1 of manganese d-states due to the smaller energy barrier. Based on the above, the self-powered photocurrent density of photodetectors has nearly twice enhancement from 0.08 mA·cm−2 to 0.14 mA·cm−2 and a high responsivity up to 7.3 mA·W−1 was achieved at 340 nm.
Osama Saber, Hicham Mahfoz Kotb, Applied Sciences, 10, 1786 (5), 2020
The current study aims at combining two building blocks together into well-designed nanostructures to act as dual-function materials; active photocatalysts in sunlight and effective adsorbents for increasing the efficiency of water purification. By these nanostructures, we could avoid the drawbacks of the existing technologies for water purification and remove the industrial pollutants by a dual process; adsorption and photocatalytic degradation. In this trend, Zn-Al layered double hydroxides (LDHs) are combined with graphene oxide to produce a series of nanolayered structures. These nanolayered structures are effective for converting Zn-Al LDHs to be photo-active in sunlight through decreasing its band gap energy from 5.5 eV to 2.5 eV. In addition, these nanolayered structures caused complete decolorization and mineralization of green dyes in sunlight through accelerating the reaction rate of the photocatalytic degradation of dyes seven times higher than that of the pure Zn-Al LDHs. In the same time, they improved the adsorption process of green dyes through creating new micro- and meso-porous structures and high surface area for Zn-Al LDHs. Finally, the well-designed nanostructures between Zn-Al LDHs and graphene oxide led to converting non-photoactive materials to be active in the visible light in addition to a complete and fast removal for organic pollutants.
Wooyoung Kim, Sunghun Cho, Jun Seop Lee, Applied Sciences, 10, 1850 (5), 2020
Conducting polymers are often used as sensor electrodes due to their conjugated chain structure, which leads to high sensitivity and rapid response at room temperature. Numerous studies have been conducted on the structures of conducting polymer nanomaterials to increase the active surface area for the target materials. However, studies on the control of the chemical state of conducting polymer chains and the modification of the sensing signal transfer with these changes have not been reported. In this work, polypyrrole nanoparticles (PPyNPs), where is PPy is a conducting polymer, are applied as a sensor transducer to analyze the chemical sensing ability of the electrode. In particular, the protonation of PPy is adjusted by chemical methods to modify the transfer sensing signals with changes in the polymer chain structure. The PPyNPs that were modified at pH 1 exhibit high sensitivity to the target analyte (down to 1 ppb of NH3) with short response and recovery times of less than 20 s and 50 s, respectively, at 25 °C.
Cristian Olmo, Lourdes Franco, Luis J. del Valle, Jordi Puiggalí, Applied Sciences, 10, 3106 (9), 2020
Ultrasound micromolding technology has been applied to get microporous polylactide scaffolds from the subsequent leaching of incorporated NaCl salts. A small amount of water-soluble polyethylene glycol (PEG) was required in order to improve the leaching process and get compact pieces with interconnected pores. Distribution of polymers in the processed specimens was quite homogeneous due to the small PEG content, although it was more concentrated in the regions close to the feeding channels due to its higher viscosity. Hydrophobic drugs like triclosan could be incorporated causing a minimum degradation during ultrasound processing and suffering an insignificant solubilization during the leaching step. Final scaffolds showed clear bactericide or bacteriostatic effects before and after 10 h of exposure. Cell proliferation of MDCK epithelial cells was higher for TCS loaded porous scaffolds (200%) than for unloaded samples (170%) and non-porous polylactide (PLA) specimens (100%, control). Micrographs showed the absence of non-inhibition areas in both the specimens and the container, confirming the biocompatibility of PLA specimens.
Muhammad Faris Syazwan Mohd Shofri, Mohd Hafiz Mohd Zaid, Khamirul Amin Matori, Yap Wing Fen, Yazid Yaakob, Suhail Huzaifa Jaafar, Siti Aisyah Abdul Wahab, Yuji Iwamoto, Applied Sciences, 10, 4940 (14), 2020
A new transparent zinc silicate glass-ceramic was derived from the 55ZnO–5B2O3–40SLS glass system via a controlled heat-treatment method. The precursor glass sample was placed through the heat-treatment process at different temperatures to study the progress in phase transformation, optical performance and emission intensity of the zinc silicate glass-ceramics. For this project, material characterization was measured through several tests using densimeter and linear shrinkage measurement, X-ray diffraction (XRD), Fourier transform infrared reflection (FTIR), ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy. The density and linear shrinkage measurements show that the density of the particular glass-ceramic samples increases with the progression of heating temperature. The XRD analysis displays the result in which the zinc silicate crystal starts to grow after the sample was treated at 700 °C. In addition, the FTIR spectra indicated that the crystallization of the zinc silicate phase occurred with the appearance of SiO4, ZnO4 and Si-O-Zn bands. UV–visible exhibited the small changes when the value for the optical band gap decreased from 3.867 to 3.423 eV, influenced by the temperature applied to the sample. Furthermore, the PL spectroscopy showed an enhancement of broad green emission at 534 nm upon the increased heat-treatment temperature. Thus, it can be concluded there is the progression of crystal growth as the heat-treatment temperature increased; three emission peaks appeared at 529, 570 and 682 nm for the green, yellow and red emissions, respectively.
Frank Lee, Manoj Tripathi, Peter Lynch, Alan B. Dalton, Applied Sciences, 10, 5157 (15), 2020
Graphene shows substrate-dependent physical and electronic properties. Here, we presented the interaction between single-layer graphene and silver nanowire (AgNW) in terms of physical straining and doping. We observed a snap-through event for single-layer graphene/AgNW at a separation of AgNWs of 55 nm, beyond the graphene suspended over the nanowires. The adhesion force between the Atomic Force Microscopy (AFM) tip apex and the suspended graphene was measured as higher than the conformed one by 1.8 nN. The presence of AgNW modulates the Fermi energy level of graphene and reduces the work function by 0.25 eV, which results in n-type doping. Consequently, a lateral p-n-p junction is formed with single AgNW. The correlation Raman plot between G-2D modes reveals the increment of strain in graphene of 0.05% due to the curvature around AgNW, and 0.01% when AgNW lies on the top of graphene. These results provide essential information in inspecting the physical and electronic influences from AgNW.
Mohammed Ali Dheyab, Azlan Abdul Aziz, Mahmood S. Jameel, Pegah Moradi Khaniabadi, Ammar A. Oglat, Applied Sciences, 10, 7020 (20), 2020
One of the most widely used modalities of clinical imaging is computed tomography (CT). Recent reports of new contrast agents toward CT imaging have been numerous. The production of gold nanoparticles (AuNPs) as contrast agents for CT is primarily a topic of intense interest. AuNPs have beneficial features for this application, including excellent X-ray attenuation, flexible sizes and shapes, tailorable surface chemistry, excellent biocompatibility and high levels of contrast generating matter. AuNPs with a size of about 18.5 nm and semi-spherical shape were synthesized using a sonochemical method. The attenuation rate of X-rays as measured in Hounsfield units per unit concentration (HU/mg) was measured. Ultrasound treatment for a duration of five min has been shown to produce highly stable AuNPs in different media (AuNPs in water and phosphate-buffered saline (PBS) was −42.1 mV and −39.5 mV, respectively). The CT value (HU = 395) of the AuNPs increased linearly with an increase in the AuNP dosage. The results confirm the use of ultrasonic treatment for the production of metal nanostructures, particularly highly stable non-toxic AuNPs, with good morphology and high-quality crystal structure using an easy and fast method. Synthesized AuNPs have the potential to be used as a CT contrast agent in medical imaging applications.
Osama Saber, Nagih M. Shaalan, Aya Osama, Adil Alshoaibi, Applied Sciences, 9, 4775 (22), 2019
The plate-like structure is the most familiar morphology for conventional layered double hydroxides (LDHs) in case their structures consist of divalent and trivalent cations in their layers. In this study, nanofibers and nanoneedles of Co–Si LDHs were prepared for the first time. By the inclusion of zirconium inside the nanolayers of LDH structures, their plates were formed and transformed to nanofibers. These nanofibers were modified by the insertion of titanium to build again plate-like morphology for the LDH structure. This morphology controlling was studied and explained by a dual anions intercalation process. The optical properties of Co–Si LDHs indicated that the incorporation of zirconium within their nanolayers decreased the band gap energy from 4.4 eV to 2.9 eV. Following the same behavior, the insertion of titanium besides zirconium within the nanolayers of Co–Si LDHs caused a further reduction in the band gap energy, which became 2.85 eV. Although there is no data for the optical properties of Co–Si LDHs in the literature, it is interesting to observe the low band gap energy for Co–Si LDHs to become more suitable for optical applications. These results concluded that the reduction of the band gap energy and the formation of nanofibers introduce new optical materials for developing and designing optical nanodevices.
undefined Liang, undefined Ge, undefined Hou, undefined Ren, undefined Yang, undefined Bunker, undefined Overton, undefined Wang, undefined Sun, C — Journal of Carbon Research, 5, 70 (4), 2019
The commercially acquired aqueous solution of “carbon quantum dots” sample was evaluated by optical absorption and fluorescence emission methods; in reference to aqueous dispersed small carbon nanoparticles and representative carbon dots prepared from chemical functionalization of the carbon nanoparticles. The results suggest a very low content of carbon that is associated with nanoscale carbon particles/domains in the as-supplied sample; and likely significant contamination by dye-like species/mixtures. In the absence of any information on the synthesis and history of the commercial sample, the possible cause of the contamination was illustrated by an example on similar dye formation in the one-pot carbonization synthesis of “red carbon dots” from citric acid–formamide precursor mixtures under too mild processing conditions that were insufficient for the intended carbonization. The negative impacts to the carbon dots research field by the apparent proliferation and now commercial availability of carbon-deficient or even largely carbon-less “carbon quantum dots”, which are more susceptible to dye contamination or dominance, are discussed.
Shahram Alijani, Sofia Capelli, Stefano Cattaneo, Marco Schiavoni, Claudio Evangelisti, Khaled M. H. Mohammed, Peter P. Wells, Francesca Tessore, Alberto Villa, Catalysts, 10, 11 (1), 2019
The catalytic performance of a series of 1 wt % Pd/C catalysts prepared by the sol-immobilization method has been studied in the liquid-phase hydrogenation of furfural. The temperature range studied was 25–75 °C, keeping the H2 pressure constant at 5 bar. The effect of the catalyst preparation using different capping agents containing oxygen or nitrogen groups was assessed. Polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and poly (diallyldimethylammonium chloride) (PDDA) were chosen. The catalysts were characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The characterization data suggest that the different capping agents affected the initial activity of the catalysts by adjusting the available Pd surface sites, without producing a significant change in the Pd particle size. The different activity of the three catalysts followed the trend: PdPVA/C > PdPDDA/C > PdPVP/C. In terms of selectivity to furfuryl alcohol, the opposite trend has been observed: PdPVP/C > PdPDDA/C > PdPVA/C. The different reactivity has been ascribed to the different shielding effect of the three ligands used; they influence the adsorption of the reactant on Pd active sites.
Zhen Cao, Tingting Zhang, Pin Ren, Ding Cao, Yanjun Lin, Liren Wang, Bing Zhang, Xu Xiang, Catalysts, 10, 69 (1), 2020
We demonstrate that using neoprene as a binder during the fabrication of TiO2-coated fabrics enhances the rates of photodegradation of dyes by the fabrics. The neoprene binder simultaneously modifies the surface of the TiO2 particles with Cl and dopes the TiO2 with Cl, without requiring high temperatures or other harsh laboratory treatments. The adsorption of chlorine on the surface and doping of the lattice with chlorine were confirmed by X-ray photoelectron spectroscopy. The chloride ions adsorbed onto the TiO2 surface introduces a negative surface charge that enhances electrostatic adsorption of cationic dyes, and greatly improves the self-sensitizing degradation performance of the dyes. Chloride ions replace lattice oxygen atoms in TiO2, inducing lattice oxygen vacancies, that reduce the apparent band gap of the TiO2 particles, enhancing its absorption of visible light, and further increasing the photocatalytic activity of the composite-coated fabric. The degradation rates of RhB and MB over 50 min were 95.2% and 96.0%, respectively. The degradation rate for MO reached 95.4% after 180 min. We also show that •OH and •O2− are active agents in the dye-degradation mechanism. Moreover, the photocatalytic performance of the composite-coated fabric was unchanged after eight cycles of photocatalytic degradation of RhB, demonstrating that the photocatalyst-coated fabrics was highly recyclable.
Only abstracts that are published under are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Shimadzu UV 3600 in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.