Olympus SZ40 - at QuestPair.com/equipment
Olympus SZ40
Selling the Olympus SZ40?
Sign Up
Can‘t find Olympus SZ40 offers?
Post a request
Description
microscope, stereo microscope, water-immersion lens, stereomicroscope
This model was found at
70 locations
The model is used in
26 countries
Usage per year (up to 2020)
Loading histogram...
75 related research fields
Loading pie chart...

About the Olympus SZ40

The model Olympus SZ40 was found in 70 unique locations in 26 countries where it was mentioned from 2001 until recentlyIt is used by scientists in various research fields such as General Medicine, Ecology, Evolution, Behavior and Systematics, Animal Science and Zoology, Parasitology, and General Biochemistry, Genetics and Molecular Biology. The model is also used in Cell Biology, Aquatic Science, General Agricultural and Biological Sciences, Biomedical Engineering, Infectious Diseases, Developmental Biology, Analytical Chemistry, Pharmacology, General Neuroscience, Insect Science, Molecular Biology, General Immunology and Microbiology, Toxicology, Health, Toxicology and Mutagenesis, Biophysics, Cellular and Molecular Neuroscience, Biochemistry, Archeology, Genetics, Orthopedics and Sports Medicine, Endocrinology, Diabetes and Metabolism, Molecular Medicine, General Environmental Science, Rheumatology, and Biotechnology.
Loading map...

Research that uses the Olympus SZ40

Jung Soo Lim, Samuel W. Plaska, Juilee Rege, William E. Rainey, Adina F. Turcu, Frontiers in Endocrinology, 12, 2021
BackgroundSomatic gene mutations that facilitate inappropriate intracellular calcium entrance have been identified in most aldosterone-producing adenomas (APAs). Studies suggest that angiotensin II and adrenocorticotropic hormone (ACTH) augment aldosterone production from APAs. Little is known, however, regarding possible variations in response to hormonal stimuli between APAs with different aldosterone-driver mutations.ObjectiveTo analyze the transcript expression of type 1 angiotensin II receptors (AGTR1), ACTH receptors (MC2R), and melanocortin 2 receptor accessory protein (MRAP) in APAs with known aldosterone-driver somatic mutations.MethodsRNA was isolated from APAs with mutations in: KCNJ5 (n = 14), ATP1A1 (n = 14), CACNA1D (n = 14), and ATP2B3 (n = 5), and from normal adjacent adrenal tissue (n = 45). Transcript expression of MC2R, MRAP, AGTR1, aldosterone synthase (CYP11B2), 17α-hydroxylase/17,20-lyase (CYP17A1), and 11β-hydroxylase (CYP11B1) were quantified using quantitative RT-PCR and normalized to β-actin.ResultsCompared to adjacent normal adrenal tissue, APAs had higher transcript levels of CYP11B2 (2,216.4 [1,112.0, 2,813.5]-fold, p < 0.001), MC2R (2.88 [2.00, 4.52]-fold, p < 0.001), and AGTR1 (1.80 [1.02, 2.80]-fold, p < 0.001]), and lower transcript levels of MRAP, CYP17A1, and CYP11B1 (0.28–0.36, p < 0.001 for all). MC2R and CYP11B2 transcripts were lower in APAs with KCNJ5 vs. other mutations (p < 0.01 for both). MC2R expression correlated positively with that of AGTR1 in APAs harboring KCNJ5 and CACNA1D mutations, and with MRAP expression in APAs harboring ATPase mutations.ConclusionsWhile MC2R and AGTR1 are expressed in all APAs, differences were observed based on the underlying aldosterone-driver somatic mutations. In tandem, our findings suggest that APAs with ATPase-mutations are more responsive to ACTH than KCNJ5-mutated APAs.
Youngin Kwon, Chae Eun Haam, Seonhee Byeon, Soo Jung Choi, Dong-Hoon Shin, Soo-Kyoung Choi, Young-Ho Lee, Molecules, 25, 3160 (14), 2020
Phellinus linteus is a well-known medicinal mushroom that is widely used in Asian countries. In several experimental models, Phellinus linteus extracts were reported to have various biological effects, including anti-inflammatory, anti-cancer, hepatoprotective, anti-diabetic, neuroprotective, and anti-angiogenic activity. In the present study, several bioactive compounds, including palmitic acid ethyl ester and linoleic acid, were identified in Phellinus linteus. The intermediate-conductance calcium-activated potassium channel (IKCa) plays an important role in the regulation of the vascular smooth muscle cells’ (VSMCs) contraction and relaxation. The activation of the IKCa channel causes the hyperpolarization and relaxation of VSMCs. To examine whether Phellinus linteus extract causes vasodilation in the mesenteric arteries of rats, we measured the isometric tension using a wire myograph. After the arteries were pre-contracted with U46619 (a thromboxane analogue, 1 µM), Phellinus linteus extract was administered. The Phellinus linteus extract induced vasodilation in a dose-dependent manner, which was independent of the endothelium. To further investigate the mechanism, we used the non-selective K+ channel blocker tetraethylammonium (TEA). TEA significantly abolished Phellinus linteus extract-induced vasodilation. Thus, we tested three different types of K+ channel blockers: iberiotoxin (BKca channel blocker), apamin (SKca channel blocker), and charybdotoxin (IKca channel blocker). Charybdotoxin significantly inhibited Phellinus linteus extract-induced relaxation, while there was no effect from apamin and iberiotoxin. Membrane potential was measured using the voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)-trimethine oxonol (DiBAC4(3)) in the primary isolated vascular smooth muscle cells (VSMCs). We found that the Phellinus linteus extract induced hyperpolarization of VSMCs, which is associated with a reduced phosphorylation level of 20 KDa myosin light chain (MLC20).
Seyed Javid Aldavood, Louise C. Abbott, Zachary R. Evans, Daniel J. Griffin, MaKenzie D. Lee, Natalia M. Quintero-Arevalo, Alice R. Villalobos, Water, 12, 3005 (11), 2020
Exposure to even low concentrations of heavy metals can be toxic to aquatic organisms, especially during embryonic development. Thus, this study aimed to investigate the toxicity of nickel and cadmium in zebrafish (Danio rerio) embryos exposed to environmentally relevant concentrations of each metal alone or in combination from 4 h through to 72 h postfertilization. Neither metal altered survival, but individual and combined exposures decreased hatching rate. Whereas cadmium did not affect total body length, trunk area, eye diameter, or eye area, nickel alone and in combination with cadmium decreased each morphological parameter. Yolk sac area, an index of metabolic rate, was not affected by nickel, but was larger in embryos exposed to high cadmium concentrations or nickel and cadmium combined at high concentrations. Nickel decreased spontaneous movement, whereas cadmium alone or nickel and cadmium combined had no effect. Neither metal altered elicited movement, but nickel and cadmium combined decreased elicited movement. Myosin protein expression in skeletal muscle was not altered by cadmium exposure. However, exposure to nickel at low concentrations and combined exposure to nickel and cadmium decreased myosin expression. Overall, nickel was more toxic than cadmium. In conclusion, we observed that combined exposures had a greater effect on movement than gross morphology, and no significant additive or synergistic interactions were present. These results imply that nickel and cadmium are toxic to developing embryos, even at very low exposure concentrations, and that these metals act via different mechanisms.
Only abstracts that are published under https://creativecommons.org/licenses/by/4.0/ are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Olympus SZ40 in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.
Disclaimer: The data on this site is intended for educational purposes only. QuestPair assumes no responsibility or liability for any errors or omissions in the content of this site. The information contained in this site is provided and presented on an “as is“ basis with no guarantees of completeness, accuracy, usefulness or timeliness.

Customer Service

Here to help you with: Product Inquiries, Shipping & Support, Technical Support, Business Inquiries and Press.

We are available to assist you Mon-Fri, 10am - 5pm CET.

+31 (0) 73 7114717
[email protected]