Nikon Eclipse E200 - at QuestPair.com/equipment
Nikon Eclipse E200
Selling the Nikon Eclipse E200?
Sign Up
Can‘t find Nikon Eclipse E200 offers?
Post a request
Description
fluorescence inverted microscope, inverted microscope, upright microscope, microscope, epifluorescent microscope, microscope, microscope, microscope, microscope, fluorescent microscope, widefield microscope, inverted microscope, microscope, microscope, microscope, microscope, inverted microscope, microscope, microscope, inverted microscope, inverted microscope, fluorescence microscope, microscope, fluorescence microscope, microscope, inverted microscope, microscope, microscope, microscope, inverted microscope, inverted microscope, microscope, microscope, laser, microscope magnification, microscope, microscope, inverted microscope, microscope, microscope, microscope, epifluorescence microscope, inverted phase/epifluorescent microscope
This model was found at
6323 locations
The model is used in
64 countries
Usage per year (up to 2020)
Loading histogram...
211 related research fields
Loading pie chart...

About the Nikon Eclipse E200

The model Nikon Eclipse E200 was found in 6323 unique locations in 64 countries where it was mentioned from 2003 until recentlyIt is used by scientists in various research fields such as Molecular Biology, Cell Biology, General Medicine, Biochemistry, and General Biochemistry, Genetics and Molecular Biology. The model is also used in Genetics, Cancer Research, Molecular Medicine, Biomedical Engineering, Oncology, Immunology, General Chemistry, Bioengineering, Biomaterials, Cellular and Molecular Neuroscience, Biophysics, Organic Chemistry, Pharmacology, Physiology, Biotechnology, General Neuroscience, General Materials Science, Physical and Theoretical Chemistry, General Physics and Astronomy, Pharmaceutical Science, Spectroscopy, Microbiology, Developmental Biology, Immunology and Allergy, and Catalysis.
Loading map...

Research that uses the Nikon Eclipse E200

Jong-Ju Ahn, Hyung-Joon Kim, Eun-Bin Bae, Won-Tak Cho, YunJeong Choi, Su-Hyun Hwang, Chang-Mo Jeong, Jung-Bo Huh, Materials, 13, 4599 (20), 2020
The purpose of this study was to evaluate the bone regeneration efficacy of an 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked collagen membrane for guided bone regeneration (GBR). A non-cross-linked collagen membrane (Control group), and an EDC-cross-linked collagen membrane (Test group) were used in this study. In vitro, mechanical, and degradation testing and cell studies were performed. In the animal study, 36 artificial bone defects were formed in the mandibles of six beagles. Implants were inserted at the time of bone grafting, and membranes were assigned randomly. Eight weeks later, animals were sacrificed, micro-computed tomography was performed, and hematoxylin-eosin stained specimens were prepared. Physical properties (tensile strength and enzymatic degradation rate) were better in the Test group than in the Control group. No inflammation or membrane collapse was observed in either group, and bone volumes (%) in defects around implants were similar in the two groups (p > 0.05). The results of new bone areas (%) analysis also showed similar values in the two groups (p > 0.05). Therefore, it can be concluded that cross-linking the collagen membranes with EDC is the method of enhancing the physical properties (tensile strength and enzymatic degradation) of the collagen membranes without risk of toxicity.
Jin Liu, Quan Dai, Michael D. Weir, Abraham Schneider, Charles Zhang, Gary D. Hack, Thomas W. Oates, Ke Zhang, Ang Li, Hockin H. K. Xu, Materials, 13, 4951 (21), 2020
Decays in the roots of teeth is prevalent in seniors as people live longer and retain more of their teeth to an old age, especially in patients with periodontal disease and gingival recession. The objectives of this study were to develop a biocompatible nanocomposite with nano-sized calcium fluoride particles (Nano-CaF2), and to investigate for the first time the effects on osteogenic and cementogenic induction of periodontal ligament stem cells (hPDLSCs) from human donors.Nano-CaF2 particles with a mean particle size of 53 nm were produced via a spray-drying machine.Nano-CaF2 was mingled into the composite at 0%, 10%, 15% and 20% by mass. Flexural strength (160 ± 10) MPa, elastic modulus (11.0 ± 0.5) GPa, and hardness (0.58 ± 0.03) GPa for Nano-CaF2 composite exceeded those of a commercial dental composite (p < 0.05). Calcium (Ca) and fluoride (F) ions were released steadily from the composite. Osteogenic genes were elevated for hPDLSCs growing on 20% Nano-CaF2. Alkaline phosphatase (ALP) peaked at 14 days. Collagen type 1 (COL1), runt-related transcription factor 2 (RUNX2) and osteopontin (OPN) peaked at 21 days. Cementogenic genes were also enhanced on 20% Nano-CaF2 composite, promoting cementum adherence protein (CAP), cementum protein 1 (CEMP1) and bone sialoprotein (BSP) expressions (p < 0.05). At 7, 14 and 21 days, the ALP activity of hPDLSCs on 20% Nano-CaF2 composite was 57-fold, 78-fold, and 55-fold greater than those of control, respectively (p < 0.05). Bone mineral secretion by hPDLSCs on 20% Nano-CaF2 composite was 2-fold that of control (p < 0.05). In conclusion, the novel Nano-CaF2 composite was biocompatible and supported hPDLSCs. Nano-CaF2 composite is promising to fill tooth root cavities and release Ca and F ions to enhance osteogenic and cementogenic induction of hPDLSCs and promote periodontium regeneration.
Iulian Antoniac, Răzvan Adam, Ana Biță, Marian Miculescu, Octavian Trante, Ionuț Mircea Petrescu, Mark Pogărășteanu, Materials, 14, 84 (1), 2020
Use of magnesium implants is a new trend in orthopedic research because it has several important properties that recommend it as an excellent resorbable biomaterial for implants. In this study, the corrosion rate and behavior of magnesium alloys during the biodegradation process were determined by in vitro assays, evolution of hydrogen release, and weight loss, and further by in vivo assays (implantation in rabbits’ bone and muscle tissue). In these tests, we also used imaging assessments and histological examination of different tissue types near explants. In our study, we analyzed the Mg-1Ca alloy and all the hypotheses regarding the toxic effects found in in vitro studies from the literature and those from this in vitro study were rejected by the data obtained by the in vivo study. Thus, the Mg-1Ca alloy represents a promising solution for orthopedic surgery at the present time, being able to find applicability in the small bones: hand or foot.
Simeng Liao, Shengguo Tang, Meinan Chang, Ming Qi, Jianjun Li, Bie Tan, Qian Gao, Shuo Zhang, Xiaozhen Li, Yulong Yin, Peng Sun, Yulong Tang, Animals, 10, 290 (2), 2020
Early weaning stress impairs the development of gastrointestinal barrier function, causing immune system dysfunctions, reduction in feed intake, and growth retardation. Autophagy was hypothesized to be a key underlying cellular process in these dysfunctions. We conjectured that rapamycin (RAPA) and chloroquine (CQ), as two autophagy-modifying agents, regulate the autophagy process and may produce deleterious or beneficial effects on intestinal health and growth. To explore the effect of autophagy on early weaning stress in piglets, 18 early-weaned piglets were assigned to three treatments (each treatment of six piglets) and treated with an equal volume of RAPA, CQ, or saline. The degree of autophagy and serum concentrations of immunoglobulins and cytokines, as well as intestinal morphology and tight junction protein expression, were evaluated. Compared with the control treatment, RAPA-treated piglets exhibited activated autophagy and had decreased final body weight (BW) and average daily gain (ADG) (p < 0.05), impaired intestinal morphology and tight junction function, and higher inflammatory responses. The CQ-treated piglets showed higher final BW, ADG, jejuna and ileal villus height, and lower autophagy and inflammation, compared with control piglets (p < 0.05). Throughout the experiment, CQ treatment was beneficial to alleviate early weaning stress and intestinal and immune system dysfunction.
Meng Li, Daixu Yuan, Yanhong Liu, Hui Jin, Bie Tan, Animals, 10, 631 (4), 2020
This study was conducted to demonstrate that dietary puerarin supplementation alleviates oxidative stress in the small intestine of diquat-challenged piglets. The results showed that puerarin administration markedly alleviated diquat-induced intestinal injury, which was indicated by the improvement of intestinal morphology, cell proliferation and barrier function. One of the potential mechanisms responsible for this was the decrease in oxidative stress, as evidenced by the increase in activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in the small intestine. Puerarin increased the protein expression levels of NF-E2-related factor 2 (Nrf2) and its downstream enzymes, including heme oxygenase 1 (HO-1), glutamate–cysteine ligase catalytic and its modifier subunit (GCLc and GCLm) in the jejunal mucosa of diquat-induced piglets. Puerarin administration improved intestinal morphology, cell proliferation, and barrier function, and increased Nrf2 and its downstream enzymes. These findings indicate that the dietary supplementation of puerarin attenuates the oxidative stress involving Nrf2 signaling pathways in diquat-challenged piglets.
Mengyan Wang, Ping Jiang, Xiang Yu, Jiaqi Mi, Zitong Bai, Xiuqi Zhang, Yinuo Liu, Xibi Fang, Runjun Yang, Zhihui Zhao, Animals, 10, 923 (6), 2020
In this study, we precisely constructed and transfected the overexpression and interference vectors in BFFs to evaluate the role of DLK1 gene on lipid metabolism in vitro. The expression of of DLK1 in the mRNA and protein level tended to reduce, and TGs were significantly increased in the pGPU6-shDLK1 group compared to the control group (p < 0.05). The expression of DLK1 in the mRNA and protein level were increased in the pBI-CMV3-DLK1 group compared to the control group, and the TGs content showed a significant decrease in the pBI-CMV3-DLK1 group (p < 0.05). Meanwhile, we used the restriction fragment length polymorphism (RFLP-PCR) detection method to screen SNPs further to explore and analyze the relationship between the gene and the economic traits of 28-month-old Chinese Simmental and the fatty acids composition of cattle longissimus muscle. The result showed that two SNPs, IVS3 + 478 C > T and IVS3 + 609 T > G, were identified as being significantly associated with carcass and meat quality traits in Chinese Simmental, such as the carcass fat coverage rate, loin eye muscle area, and fat color score. In summary, our results indicated that DLK1 can affect lipid metabolism in bovine and these two SNPs might be applied as genetic markers of meat quality traits for beef cattle breeding.
Adnan Khan, Muhammad Zahoor Khan, Jinhuan Dou, Saqib Umer, Huitao Xu, Abdul Sammad, Hua-Bin Zhu, Yachun Wang, Animals, 10, 1060 (6), 2020
Heat stress in dairy cattle is recognized to compromise fertility by altering the functions of ovarian follicle-enclosed cells, e.g., oocyte and granulosa cells (GCs). Catalase is an antioxidant enzyme that plays a significant role in cellular protection against oxidative damage by the degradation of hydrogen peroxide to oxygen and water. In this study, the role and mechanism of CAT on the heat stress (HS)-induced apoptosis and altered proliferation of bovine GCs were studied. The catalase gene was knocked-down successfully in bovine GCs at both the transcriptional and translational levels. After a successful knockdown using siRNA, GCs were divided into HS (40 °C + NC and 40 °C + CAT siRNA) and 38 °C + NC (NC) groups. The GCs were then examined for ROS, viability, mitochondrial membrane potential (MMP), cell cycle, and biosynthesis of progesterone (P4) and estrogen (E2) hormones. The results indicated that CAT silencing promoted ROS production and apoptosis by up-regulating the Bcl-2-associated X protein (BAX) and Caspase-3 genes both at the transcriptional and translational levels. Furthermore, the knockdown of CAT markedly disrupted the MMP, impaired the production of P4 and E2, altered the progression of the G1 phase of the cell cycle, and decreased the number of cells in the S phase. This was further verified by the down-regulation of proliferating cell nuclear antigen (PCNA), CyclinB1, steroidogenic acute regulatory protein (STAR), and cytochrome P450 family 11 subfamily A member 1 (Cyp11A1) genes. Our study presented a novel strategy to characterize how CAT can regulate cell proliferation and apoptosis in GCs under HS. We concluded that CAT is a broad regulatory marker in GCs by regulating apoptosis, cellular progression, and simultaneously by vital fluctuations in hormonal signaling. Our findings infer a crucial evidence of how to boost the fertility of heat-stressed cows.
Kihae Ra, Hyun Ju Oh, Eun Young Kim, Sung Keun Kang, Jeong Chan Ra, Eui Hyun Kim, Byeong Chun Lee, Animals, 10, 1414 (8), 2020
The quality of embryos produced by assisted reproductive techniques should be advanced by the improvement of in vitro culture conditions for successful implantation and pregnancy maintenance. We investigated the anti-oxidative effect of human adipose stem cell (ASC) conditioned medium with its optimal basal medium, Dulbecco′s modified Eagle′s medium (DMEM-CM), or keratinocyte serum-free medium (KSFM-CM) as supplements during in vitro culture (IVC) of in vitro fertilized mouse embryo. At first, preimplantation embryo development was evaluated in KSFM-CM and DMEM-CM supplemented cultures at various concentrations. The blastocyst (BL) and hatched BL formation rates were significantly increased in 5% DMEM-CM, while no difference was observed from KSFM-CM. Next, comparing the efficacy of KSFM-CM and DMEM-CM at the same concentration, DMEM-CM enhanced the developmental rate of 16 cells, morula, BL, and hatched BL. The expression level of reactive oxygen species decreased and that of glutathione increased in BL cultured with DMEM-CM, which confirms its anti-oxidative effect. Furthermore, apoptosis in BL cultured with DMEM-CM was reduced compared with that in KSFM-CM. This study demonstrated that the comparative effect of human ASC-CM made of two different basal media during mouse embryo IVC and anti-oxidative effect of 5% DMEM-CM was optimal to improve preimplantation embryo development.
Rong-Ge Yan, Qi-Lin Yang, Qi-En Yang, Animals, 10, 1691 (9), 2020
In the mammalian testes, Sertoli cells are the only somatic cells in the seminiferous tubules that provide structural, nutritional and regulatory support for developing spermatogenic cells. Sertoli cells only proliferate during the fetal and neonatal periods and enter a quiescent state after puberty. Functional evidences suggest that the size of Sertoli cell population determines sperm production and fertility. However, factors that direct Sertoli cell proliferation and maturation are not fully understood. Transcription factor E4F1 is a multifunctional protein that serves essential roles in cell fate decisions and because it interacts with pRB, a master regulator of Sertoli cell function, we hypothesized that E4F1 may have a functional role in Sertoli cells. E4f1 mRNA was present in murine testis and immunohistochemical staining confirmed that E4F1 was enriched in mature Sertoli cells. We generated a conditional knockout mouse model using Amh-cre and E4f1flox/flox lines to study E4F1 fucntion in Sertoli cells and the results showed that E4f1 deletion caused a significant reduction in testis size and fertility. Further analyses revealed that meiosis progression and spermiogenesis were normal, however, Sertoli cell proliferation was impaired and germ cell apoptosis was elevated in the testis of E4f1 conditional knockout mice. On the basis of these findings, we concluded that E4F1 was expressed in murine Sertoli cells and served important functions in regulating Sertoli cell proliferation and fertility.
Daixiu Yuan, Jing Wang, Dingfu Xiao, Jiefeng Li, Yanhong Liu, Bie Tan, Yulong Yin, Animals, 10, 1998 (11), 2020
Eucommia ulmoides flavones (EUF) have been demonstrated to attenuate the inflammation and oxidative stress of piglets. This study aimed to test whether EUF could be used as an alternative antibiotic growth promoter to support growth performance and maintain intestinal health in weanling piglets. Weaned piglets (n = 480) were assigned into three groups and fed with a low-protein basal diet (NC), or supplementation with antibiotics (PC) or 0.01% EUF (EUF). Blood, intestinal contents, and intestine were collected on days 15 and 35 after weaning. The results showed the PC and EUF supplementations increased (p < 0.05) body weight on day 35, average daily gain and gain: feed ratio from day 15 to day 35 and day 0 to day 35, whereas decreased (p < 0.05) the diarrhea index of weanling piglets. EUF treatment increased (p < 0.05) jejunal villus height: crypt depth ratio, jejunal and ileal villus height, and population of ileal lactic acid bacteria on day 15 but decreased (p < 0.05) the population of ileal coliform bacteria on day 15 and day 35. These findings indicated the EUF, as the potential alternative to in-feed antibiotic growth promoter, could improve growth performance and intestinal morphology, and decrease colonization of coliform bacteria and diarrhea index in weanling piglets.
Muhammad Rosyid Ridlo, Eui Hyun Kim, Geon A. Kim, Animals, 11, 221 (1), 2021
Endoplasmic reticulum (ER) stress can be triggered during in vitro embryo production and is a major obstacle to embryo survival. MicroRNA (miR)-210 is associated with cellular adaptation to cellular stress and inflammation. An experiment was conducted to understand the effects of miR-210 on in vitro embryo development, ER stress, and apoptosis; to achieve this, miR-210 was microinjected into parthenogenetically activated embryos. Our results revealed that miR-210 inhibition significantly enhanced the cleavage rate, blastocyst formation rate, and total cell number (TCN) of blastocysts, and reduced expression levels of XBP1 (p < 0.05). miR-210 inhibition greatly reduced the expression of ER stress-related genes (uXBP1, sXBP1, ATF4, and PTPN1) and Caspase 3 and increased the levels of NANOG and SOX2 (p < 0.05). A miR-210-mimic significantly decreased the cleavage, blastocyst rate, TCN, and expression levels of XBP1 compared with other groups (p < 0.05). The miR-210-mimic impaired the expression levels of uXBP1, sXBP1, ATF4, PTPN1, and Caspase 3 and decreased the expression of NANOG and SOX2 (p < 0.05). In conclusion, miR-210 plays an essential role in porcine in vitro embryo development. Therefore, we suggest that miR-210 inhibition could alleviate ER stress and reduce apoptosis to support the enhancement of in vitro embryo production.
Muhammad Rosyid Ridlo, Eui Hyun Kim, Anukul Taweechaipaisankul, Byeong Chun Lee, Geon A. Kim, Animals, 11, 473 (2), 2021
The main factor of embryonic demise is endoplasmic reticulum (ER) stress. Successful attenuation of ER stress results in an improvement in embryo development. We studied the impact of adiponectin in the in vitro culture (IVC) of porcine embryos derived from parthenogenetic activation and somatic cell nuclear transfer (SCNT). The first experiment revealed that 15 and 30 μg/mL adiponectin treatments improved cleavage, blastocyst rates, and total cell number (TCN) of parthenogenetic embryos and reduced the expression of XBP1 compared to the 5 μg/mL adiponectin treatment and control groups (p < 0.05). The second experiment showed that cleavage rate, blastocyst formation rate, and TCN of blastocysts were improved in the 15 μg/mL adiponectin treatment group compared with the control group, with significantly reduced XBP1 expression in ≥4-cell stage SCNT embryos and blastocysts (p < 0.05). Treatment with 15 μg/mL adiponectin significantly improved the expression of XBP1 and reduced the expression of ER stress-related genes (uXBP1, sXBP1, PTPN1, and ATF4), increased the expression levels of pluripotency-related genes (Nanog and SOX2), and decreased apoptosis-related gene expression (Caspase-3). These results suggest that 15 μg/mL adiponectin enhanced the in vitro developmental capacity of early-stage SCNT porcine embryos by reducing ER stress and apoptosis.
Hyunjin Kyoung, Jeong Jae Lee, Jin Ho Cho, Jeehwan Choe, Joowon Kang, Hanbae Lee, Yanhong Liu, Younghoon Kim, Hyeun Bum Kim, Minho Song, Animals, 11, 504 (2), 2021
Dietary glutamic acid (GLU) is used as a feed additive because of its functional characteristics that may affect the growth performance and health of pigs. This study was carried out to determine the effects of dietary GLU on growth performance, nutrient digestibility, immune responses, and intestinal health of weaned pigs. A total of ninety-six weaned pigs (8.07 ± 1.17 kg of body weight; 28 days of age) were assigned to two dietary treatments (8 pigs/pen; 6 replicates/treatment) in a randomized complete block design (block: body weight): (1) a typical weaner diet (CON) and (2) CON supplemented with 0.5% GLU. The experimental period was for 4 weeks. All data and sample collections were performed at the specific time points during the experimental period. Pigs fed GLU had higher average daily gain and average daily feed intake for the first two weeks and nutrient digestibility than pigs fed CON. In addition, dietary GLU increased villus height to crypt depth ratio, number of goblet cells, and ileal gene expression of claudin family and occludin compared with CON, but decreased serum TNF-α and IL-6 and ileal gene expression of TNF-α. Moreover, pigs fed GLU had increased relative composition of bacterial communities of genus Prevotella and Anaerovibrio and decreased genus Clostridium and Terrisporobacter compared with those fed CON. This study suggests that dietary GLU influences growth performance and health of weaned pigs by modulating nutrient digestibility, intestinal morphology, ileal gene expression of tight junction proteins and cytokines, immune responses, and microbial community in the gut.
Xuzhi Wan, Tiantian Li, Dan Liu, Yihan Chen, Yuanyuan Liu, Bin Liu, Huiying Zhang, Chao Zhao, Marine Drugs, 16, 498 (12), 2018
Effects of marine microalga Chlorella pyrenoidosa 55% ethanol extract (CPE55) on lipid metabolism, gut microbiota and regulation mechanism in high fat diet-fed induced hyperlipidaemia rats were investigated. Structure characterizations of major compounds in CPE55 were determined by ultra-performance liquid chromatography-quadrupole/time of flight mass spectrometry (UPLC-Q-TOF-MS/MS). The compositions of gut microbiota in rats were analyzed by high-throughput next-generation 16S rRNA gene sequencing. Oral administration with CPE55 markedly alleviated dyslipidemia through improving adverse blood lipid profile and inhibiting hepatic lipid accumulation and steatosis. CPE55 has downregulated the gene expression levels of acetyl CoA carboxylase, sterol regulatory element-binding transcription factor-1c, and 3-hydroxy-3-methyl glutaryl coenzyme A reductase and upregulated adenosine 5′-monophosphate-activated protein kinase-α. It has also improved the abundance of bacteria Alistipes, Prevotella, Alloprevotella, and Ruminococcus1 and decreased the abundances of Turicibacter and Lachnospira. Turicibacter and Lachnospira were both positive correlations of metabolic phenotypes. The findings above illustrated that CPE55 might be developed as food ingredients to ameliorate lipid metabolic disorders and hyperlipidaemia.
Kyung-Hyun Cho, Jae-Ryong Kim, In-Chul Lee, Hyung-Jun Kwon, Antioxidants, 10, 209 (2), 2021
Human high-density lipoproteins (HDL) show a broad spectrum of antiviral activity in terms of anti-infection. Although many reports have pointed out a correlation between a lower serum HDL-C and a higher risk of COVID-19 infection and progression, the in vitro antiviral activity of HDL against SARS-CoV-2 has not been reported. HDL functionality, such as antioxidant and anti-infection, can be impaired by oxidation and glycation and a change to pro-inflammatory properties. This study compared the antiviral activity of native HDL with glycated HDL via fructosylation and native low-density lipoproteins (LDL). After 72 h of fructosylation, glycated HDL showed a typical multimerized protein pattern with an elevation of yellowish fluorescence. Glycated HDL showed a smaller particle size with an ambiguous shape and a loss of paraoxonase activity up to 51% compared to native HDL. The phagocytosis of acetylated LDL was accelerated 1.3-fold by glycated HDL than native HDL. Native HDL showed 1.7 times higher cell viability and 3.6 times higher cytopathic effect (CPE) inhibition activity against SARS-CoV-2 than that of glycated HDL under 60 μg/mL (approximately final 2.2 μM) in a Vero E6 cell. Native HDL showed EC50 = 52.1 ± 1.1 μg/mL (approximately final 1.8 μM) for the CPE and CC50 = 79.4 ± 1.5 μg/mL (around 2.8 μM). The selective index (SI) of native HDL was calculated to be 1.52. In conclusion, native HDL shows potent antiviral activity against SARS-CoV-2 without cytotoxicity, while the glycation of HDL impairs its antiviral activity. These results may explain why patients with diabetes mellitus or hypertension are more sensitive to a COVID-19 infection and have a higher risk of mortality.
Kihae Ra, Hyun Ju Oh, Eun Young Kim, Sung Keun Kang, Jeong Chan Ra, Eui Hyun Kim, Se Chang Park, Byeong Chun Lee, Antioxidants, 10, 268 (2), 2021
Oxidative stress is a major cause of damage to the quantity and quality of embryos produced in vitro. Antioxidants are usually supplemented to protect embryos from the suboptimal in vitro culture (IVC) environment. Amniotic membrane-derived mesenchymal stem cells (AMSC) have emerged as a promising regenerative therapy, and their paracrine factors with anti-oxidative effects are present in AMSC conditioned medium (CM). We examined the anti-oxidative potential of human AMSC-CM treatment during IVC on mouse preimplantation embryo development and antioxidant gene expression in the forkhead box O (FoxO) pathway. AMSC-CM (10%) was optimal for overall preimplantation embryo developmental processes and upregulated the expression of FoxOs and their downstream antioxidants in blastocysts (BL). Subsequently, compared to adipose-derived mesenchymal stem cell (ASC)-CM, AMSC-CM enhanced antioxidant gene expression and intracellular GSH levels in the BL. Total antioxidant capacity and SOD activity were greater in AMSC-CM than in ASC-CM. Furthermore, SOD and catalase were more active in culture medium supplemented with AMSC-CM than in ASC-CM. Lastly, the anti-apoptotic effect of AMSC-CM was observed with the regulation of apoptosis-related genes and mitochondrial membrane potential in BL. In conclusion, the present study established AMSC-CM treatment at an optimal concentration as a novel antioxidant intervention for assisted reproduction.
Eui-Hyun Kim, Muhammad-Rosyid Ridlo, Byeong-Chun Lee, Geon A. Kim, Antioxidants, 10, 771 (5), 2021
Melatonin and phytanic acid (PA) are known to be involved in lipid metabolism and β-oxidation, in which peroxisomal activities also significantly participate. In addition, other studies have reported that the nuclear factor-erythroid-derived 2-like 2 (Nrf2 or NFE2L2) signaling pathway mediates lipid metabolism and its subsequent cascades. As these mechanisms are partially involved in porcine oocytes or embryonic development, we hypothesized that the factors governing these mechanisms could be interconnected. Therefore, we aimed to investigate possible crosstalk between peroxisomal activities and Nrf2 signaling in porcine embryos following melatonin and PA treatment. Porcine embryos were cultured for seven days after parthenogenetic activation, and subsequently treated with melatonin and PA, or injected with Pex19-targeted siRNAs. Real-time PCR, immunocytochemistry, and BODIPY staining were used to evaluate peroxisomal activities, Nrf2 signaling, and subsequent lipid metabolism. We found that melatonin/PA treatment enhanced embryonic development, whereas injection with Pex19-targeted siRNAs had the opposite effect. Moreover, melatonin/PA treatment upregulated peroxisomal activities, Nrf2 signaling, lipid metabolism, and mitochondrial membrane potentials, whereas most of these mechanisms were downregulated by Pex19-targeted siRNAs. Therefore, we suggest that there is a connection between the action of melatonin and PA and the Nrf2 signaling pathway and peroxisomal activities, which positively influences porcine embryonic development.
Nobuharu Inaba, Isamu Kodama, Satoshi Nagai, Tomotaka Shiraishi, Kohei Matsuno, Atsushi Yamaguchi, Ichiro Imai, Applied Sciences, 10, 5658 (16), 2020
The intensity and frequency of harmful algal blooms (HABs) have increased, posing a threat to human seafood resources due to massive kills of cultured fish and toxin contamination of bivalves. In recent years, bacteria that inhibit the growth of HAB species were found to be densely populated on the biofilms of some macroalgal species, indicating the possible biological control of HABs by the artificial introduction of macroalgal beds. In this study, an artificially created Ulva pertusa bed using mobile floating cages and a natural macroalgal bed were studied to elucidate the distribution of algal growth-limiting bacteria (GLB). The density of GLB affecting fish-killing raphidophyte Chattonella antiqua, and two harmful dinoflagellates, were detected between 106 and 107 CFU g−1 wet weight on the biofilm of artificially introduced U. pertusa and 10 to 102 CFU mL−1 from adjacent seawater; however, GLB found from natural macroalgal species targeted all tested HAB species (five species), ranging between 105 and 106 CFU g−1 wet weight in density. These findings provide new ecological insights of GLB at macroalgal beds, and concurrently demonstrate the possible biological control of HABs by artificially introduced Ulva beds.
Beeyoung Gun Lee, Jae-Seoun Hur, Microorganisms, 7, 205 (7), 2019
Arthonia ulleungdoensis Lee & Hur is described as a new lichen species from South Korea. The new species is distinguishable from Arthonia ruana A. Massal. by its large, rounded and non-punctiform apothecia, taller apothecial section, asci with fewer spores, and larger and permanently colorless spores. Molecular analyses employing mitochondrial small subunit (mtSSU) and RNA polymerase subunit II (RPB2) sequences strongly support Arthonia ulleungdoensis as a distinct species in the genus Arthonia. Overall, 22 Arthonia species are currently recorded in South Korea. A surrogate key is provided to assist in the identification of all 10 taxa of Arthonia/Arthothelium with muriform spores in Northeast Asia.
Junwei Zhao, Liyuan Han, Mingying Yu, Peng Cao, Dongmei Li, Xiaowei Guo, Yongqiang Liu, Xiangjing Wang, Wensheng Xiang, Microorganisms, 7, 360 (9), 2019
Ralstonia solanacearum is a major phytopathogenic bacterium that attacks many crops and other plants around the world. In this study, a novel actinomycete, designated strain NEAU-SSA 1T, which exhibited antibacterial activity against Ralstonia solanacearum, was isolated from soil collected from Mount Song and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics of the strain coincided with those of the genus Streptomyces. The 16S rRNA gene sequence analysis showed that the isolate was most closely related to Streptomyces aureoverticillatus JCM 4347T (97.9%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a cluster with Streptomyces vastus JCM4524T (97.4%), S. cinereus DSM43033T (97.2%), S. xiangluensis NEAU-LA29T (97.1%) and S. flaveus JCM3035T (97.1%). The cell wall contained LL-diaminopimelic acid and the whole-cell hydrolysates were ribose, mannose and galactose. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), hydroxy-phosphatidylethanolamine (OH-PE), phosphatidylinositol (PI), two phosphatidylinositol mannosides (PIMs) and an unidentified phospholipid (PL). The menaquinones were MK-9(H4), MK-9(H6), and MK-9(H8). The major fatty acids were iso-C17:0, C16:0 and C17:1 ω9c. The DNA G+C content was 69.9 mol %. However, multilocus sequence analysis (MLSA) based on five other house-keeping genes (atpD, gyrB, recA, rpoB, and trpB), DNA–DNA relatedness, and physiological and biochemical data showed that the strain could be distinguished from its closest relatives. Therefore, it is proposed that strain NEAU-SSA 1T should be classified as representatives of a novel species of the genus Streptomyces, for which the name Streptomyces sporangiiformans sp. nov. is proposed. The type strain is NEAU-SSA 1T (=CCTCC AA 2017028T = DSM 105692T).
Only abstracts that are published under https://creativecommons.org/licenses/by/4.0/ are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Nikon Eclipse E200 in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.
Disclaimer: The data on this site is intended for educational purposes only. QuestPair assumes no responsibility or liability for any errors or omissions in the content of this site. The information contained in this site is provided and presented on an “as is“ basis with no guarantees of completeness, accuracy, usefulness or timeliness.

Customer Service

Here to help you with: Product Inquiries, Shipping & Support, Technical Support, Business Inquiries and Press.

We are available to assist you Mon-Fri, 10am - 5pm CET.

+31 (0) 73 7114717
[email protected]