Malvern ZetaSizer - at
Malvern ZetaSizer
Selling the Malvern ZetaSizer?
Sign Up
Can‘t find Malvern ZetaSizer offers?
Post a request
equipment, instrument, instrument, instrument
This model was found at
251 locations
The model is used in
43 countries
Usage per year (up to 2020)
Loading histogram...
96 related research fields
Loading pie chart...

About the Malvern ZetaSizer

The model Malvern ZetaSizer was found in 251 unique locations in 43 countries where it was mentioned from 2008 until recentlyIt is used by scientists in various research fields such as General Materials Science, Pharmaceutical Science, General Medicine, General Chemistry, and Biomaterials. The model is also used in Bioengineering, Biomedical Engineering, General Chemical Engineering, Biotechnology, Physical and Theoretical Chemistry, Polymers and Plastics, Spectroscopy, Organic Chemistry, Molecular Biology, Condensed Matter Physics, Molecular Medicine, General Physics and Astronomy, Mechanics of Materials, Drug Discovery, Biochemistry, Biophysics, Electrochemistry, Surfaces and Interfaces, Materials Chemistry, Catalysis, Inorganic Chemistry, Computer Science Applications, General Biochemistry, Genetics and Molecular Biology, Pharmacology, and Analytical Chemistry.
Loading map...

Research that uses the Malvern ZetaSizer

Zhou Xu, Lin-wei Zhang, Ling-li Long, Shao-hua Zhu, Mao-long Chen, Li Ding, Yun-hui Cheng, Frontiers in Bioengineering and Biotechnology, 8, 2020
To resolve the occurrence of unfulfillable detection in high-salts foods, we used fluorescence resonant energy transfer (FRET) sensors based on nanoparticle upconversion. In this study, we developed a novel FRET sensor for the detection of bisphenol A (BPA) in high-salt foods. We based this approach on the assembly of aptamer modified upconversion nanoparticles (DNA1-UCNPs) and complementary DNA modified metal organic frames (DNA2-MOFs), which possessed corresponding wavelength absorption. Targeting BPA signal transduction was performed using the BPA aptamer, via competitive recognition between the BPA analyte and complementary DNA sequences in a high-salt solution. Sensor adaption in high-salt samples was attributed to functional hydrophilic groups, modified in the MOFs, and the enhanced colloidal stability of these MOFs. The MOF-UCNP assembly displayed considerable analytical performance in terms of BPA detection, with a linear range of 0.1–100 nM, and a limit of detection (LOD) of 0.02 nM, in a 340 mM NaCl food sample (the energy drink, Gatorade). Thus, this method provides a solid basis for small molecules detection in high-salt foods.
Letitia Burgess, Hannah Wilson, Alex R. Jones, Sam Hay, Louise S. Natrajan, Frontiers in Chemistry, 8, 2020
Upconverting phosphors (UCPs) convert multiple low energy photons into higher energy emission via the process of photon upconversion and offer an attractive alternative to organic fluorophores for use as luminescent probes. Examples of biosensors utilizing the apparent energy transfer of UCPs and nanophosphors (UCNPs) with biomolecules have started to appear in the literature but very few exploit the covalent anchoring of the biomolecule to the surface of the UCP to improve the sensitivity of the systems. Here, we demonstrate a robust and versatile method for the covalent attachment of biomolecules to the surface of a variety of UCPs and UCNPs in which the UCPs were capped with functionalized silica in order to provide a surface to covalently conjugate biomolecules with surface-accessible cysteines. Variants of BM3Heme, cytochrome C, glucose oxidase, and glutathione reductase were then attached via maleimide-thiol coupling. BM3Heme, glucose oxidase, and glutathione reductase were shown to retain their activity when coupled to the UCPs potentially opening up opportunities for biosensing applications.
Weiteng An, Sira Defaus, David Andreu, Pilar Rivera-Gil, Frontiers in Immunology, 12, 2021
Mesoporous silica nanoparticles have drawn increasing attention as promising candidates in vaccine delivery. Previous studies evaluating silica-based vaccine delivery systems concentrated largely on macromolecular antigens, such as inactivated whole viruses. In this study, we synthesized dendritic mesoporous silica nanoparticles (DMSNs), and we evaluated their effectiveness as delivery platforms for peptide-based subunit vaccines. We encapsulated and tested in vivo an earlier reported foot-and-mouth disease virus (FMDV) peptide vaccine (B2T). The B2T@DMSNs formulation contained the peptide vaccine and the DMSNs without further need of other compounds neither adjuvants nor emulsions. We measured in vitro a sustained release up to 930 h. B2T@DMSNs-57 and B2T@DMSNs-156 released 23.7% (135 µg) and 22.8% (132 µg) of the total B2T. The formation of a corona of serum proteins around the DMSNs increased the B2T release up to 61% (348 µg/mg) and 80% (464 µg/mg) for B2T@DMSNs-57 and B2T@DMSNs-156. In vitro results point out to a longer sustained release, assisted by the formation of a protein corona around DMSNs, compared to the reference formulation (i.e., B2T emulsified in Montanide). We further confirmed in vivo immunogenicity of B2T@DMSNs in a particle size-dependent manner. Since B2T@DMSNs elicited specific immune responses in mice with high IgG production like the reference B2T@Montanide™, self-adjuvant properties of the DMSNs could be ascribed. Our results display DMSNs as efficacious nanocarriers for peptide-based vaccine administration.
Sahar Farahnak Roudsari, Houman Rajabi Islami, Seyed Abdolmajid Mousavi, Mehdi Shamsaie Mehrgan, Frontiers in Veterinary Science, 8, 2021
In recent years, chitosan has gained considerable attention due to its favorable properties such as excellent biocompatibility and biodegradability for which it can be used as a health supplement for delivering bioactive compounds in the food industry and nutrition. In the present study, the effect of nanochitosans coated with folic acid (FA) was considered on the growth performance, hematological parameters, antioxidant status, and serum immune responses of rainbow trout (Oncorhynchus mykiss) fingerlings. Graded levels of FA-coated nanochitosan (0, 0.1, 0.25, 0.5, and 1 mg kg−1 diet) were added to the basal diet, and each experimental diet was fed to three groups of fish with an approximate weight of 31 g for 8 weeks. The experimental study demonstrated that dietary FA-coated nanochitosan significantly (P < 0.05) improved the weight gain ration (WGR), specific growth rate (SGR), and feed conversion ratio (FCR) of fish at the end of the feeding trial. There were also linearly increasing trends in red blood cells (RBCs), white blood cells (WBCs), hemoglobin (Hb), and hematocrit (Hct) of fish fed with increasing dietary chitosan/FA levels, whereas no significant difference was recorded in differential leukocyte count of fish among the treatments. In case of antioxidant responses, fish fed diet supplemented with 0.50 mg kg−1 FA-coated nanochitosan had the highest CAT and SOD activities, while the maximum activity of GPX was found in fish fed diet supplemented with 1.00 mg kg−1 FA-coated nanochitosan. Malondialdehyde activity also reached the lowest value in fish fed with 1.00 mg kg−1 FA-coated nanochitosan-supplemented diet (P < 0.05). Measured immune responses showed a linear augmentation in lysozyme activity (LA) with increasing dietary FA-coated nanochitosan, while linearly and quadratically increasing trends were recorded in immunoglobulin M (IgM) content as well as complement component C3 and C4 activities by increasing the supplementation of nanochitosan coated with FA (P < 0.05). Findings of the current study illustrated the positive effect of dietary FA-coated nanochitosan as a promising compound on improving the growth performance, feed utilization, antioxidant status, and immune responses of rainbow trout.
Thi Hau Vu, Thi Mai Viet Ngo, Thi Tu Anh Duong, Thi Hien Lan Nguyen, Xuan Truong Mai, Thi Hong Nguyet Pham, Thi Phuong Le, Thi Hue Tran, Journal of Analytical Methods in Chemistry, 2020, 1-9, 2020
This work investigated the removal of antibiotic tetracycline (TC) from wastewater using nanocomposite material based on laterite modified with polyanion, polystyrene sulfonate (PSS). The effective factors influenced on the TC removal using nanocomposite PSS-modified laterite (NCPML) were optimized and found to be pH 4, solid-liquid ratio 5 mg/mL, and contact time 180 min. The highest removal of TC reached about 88% under the optimum adsorption conditions. The adsorption isotherm and kinetics of TC adsorption onto NCPML were in good agreement with the Langmuir and pseudo-second-order models, respectively. The characteristics of the NCPML material before and after TC adsorption were examined by zeta (ζ) potential measurements, Brunauer–Emmett–Teller (BET) method, and Fourier transform infrared spectroscopy (FT-IR). The TC adsorption onto NCPML was induced by electrostatic interaction, hydrogen bonding, and diffusion interaction. The TC removal from wastewater was approximately 94% while efficiency still reached 66% after five regenerations. Our research reveals that NCPML is a high-performance adsorbent for TC removal from wastewater.
Khoa Minh Le, Nhu-Thuy Trinh, Vinh Dinh-Xuan Nguyen, Tien-Dat Van Nguyen, Thu-Ha Thi Nguyen, Toi Van Vo, Tuan Quoc Tran, Dai-Nghiep Ngo, Long Binh Vong, Journal of Nanomaterials, 2021, 1-11, 2021
Chronic inflammation is considered as one of the challenging diseases, and overproduction of reactive oxygen species (ROS) is strongly related to the onset of chronic inflammation. Therefore, antioxidant and anti-inflammatory approaches are particularly becoming suitable treatment and prevention of inflammation. Curcumin (CUR), a main component of turmeric extract, is well known as an effective agent in both antioxidant and anti-inflammatory activities; however, there are still some limitations of its use including poor water solubility, low bioavailability, and oxidation by ROS. Nanotechnology has been used as a drug delivery system, which is a promising approach in overcoming the aforementioned drawbacks of CUR; hence, it improves the antioxidant and anti-inflammatory effects of conventional medications. In this research, silica-containing redox nanoparticles (siRNP) were designed with the size of several tens of nanometers, prepared by self-assembly of an amphiphilic block copolymer consisting of drug absorptive silica moiety and ROS-scavenging nitroxide radical moiety in the hydrophobic segment. CUR was simply encapsulated into siRNP through the dialysis method, creating CUR-loaded siRNP (CUR@siRNP), which significantly improved the water solubility of CUR. The efficient antioxidant activity and anti-inflammatory effect of CUR@siRNP in vitro were also improved via 2,2-diphenyl-1-picrylhydrazyl assay and lipopolysaccharide-induced macrophage cell line activation, respectively. Oral administration of CUR@siRNP showed improvement in pharmacokinetic profile in vivo including AUC and Cmax values as compared to free CUR. Furthermore, the anti-inflammatory effect of nanoformulation was investigated in the colitis mouse model induced by dextran sodium sulfate.
Caitlin Ung, Maria Tsoli, Jie Liu, Domenico Cassano, Salvador Pocoví-Martínez, Dannielle H. Upton, Anahid Ehteda, Friederike M. Mansfeld, Timothy W. Failes, Annafranca Farfalla, Christopher Katsinas, Maria Kavallaris, Greg M. Arndt, Orazio Vittorio, Giuseppe Cirillo, Valerio Voliani, David S. Ziegler, Cancers, 13, 1278 (6), 2021
Diffuse Intrinsic Pontine Gliomas (DIPGs) are highly aggressive paediatric brain tumours. Currently, irradiation is the only standard treatment, but is palliative in nature and most patients die within 12 months of diagnosis. Novel therapeutic approaches are urgently needed for the treatment of this devastating disease. We have developed non-persistent gold nano-architectures (NAs) functionalised with human serum albumin (HSA) for the delivery of doxorubicin. Doxorubicin has been previously reported to be cytotoxic in DIPG cells. In this study, we have preclinically evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoarchitectures (NAs-HSA-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and doxorubicin-loaded NAs. Colony formation assays demonstrated greater potency of NAs-HSA-Dox on colony formation compared to doxorubicin. Western blot analysis indicated increased apoptotic markers cleaved Parp, cleaved caspase 3 and phosphorylated H2AX in NAs-HSA-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of NAs-HSA-Dox into DIPG neurospheres compared to doxorubicin alone. Despite the potency of the NAs in vitro, treatment of an orthotopic model of DIPG showed no antitumour effect. This disparate outcome may be due to the integrity of the blood-brain barrier and highlights the need to develop therapies to enhance penetration of drugs into DIPG.
Sergio Garnica-Galvez, Stefanie H. Korntner, Ioannis Skoufos, Athina Tzora, Nikolaos Diakakis, Nikitas Prassinos, Dimitrios I. Zeugolis, Cells, 10, 859 (4), 2021
The use of macromolecular crowding in the development of extracellular matrix-rich cell-assembled tissue equivalents is continuously gaining pace in regenerative engineering. Despite the significant advancements in the field, the optimal macromolecular crowder still remains elusive. Herein, the physicochemical properties of different concentrations of different molecular weights hyaluronic acid (HA) and their influence on equine adipose-derived stem cell cultures were assessed. Within the different concentrations and molecular weight HAs, the 10 mg/mL 100 kDa and 500 kDa HAs exhibited the highest negative charge and hydrodynamic radius, and the 10 mg/mL 100 kDa HA exhibited the lowest polydispersity index and the highest % fraction volume occupancy. Although HA had the potential to act as a macromolecular crowding agent, it did not outperform carrageenan and Ficoll®, the most widely used macromolecular crowding molecules, in enhanced and accelerated collagen I, collagen III and collagen IV deposition.
Santosh Kumar Singh, Jennifer B. Gordetsky, Sejong Bae, Edward P. Acosta, James W. Lillard, Rajesh Singh, Cells, 9, 1976 (9), 2020
An abnormality in hedgehog (Hh) signaling has been implicated in the progression of prostate cancer (PCa) to a more aggressive and therapy-resistant disease. Our assessments of human PCa tissues have shown an overexpression of the Hh pathway molecules, glioma-associated oncogene homolog 1 (GLI-1), and sonic hedgehog (SHH). The effect of the natural compound thymoquinone (TQ) in controlling the expression of Hh signaling molecules in PCa was investigated in this study. We generated planetary ball-milled nanoparticles (PBM-NPs) made with a natural polysaccharide, containing TQ, and coated with an RNA aptamer, A10, which binds to prostate-specific membrane antigen (PSMA). We prepared docetaxel-resistant C4-2B-R and LNCaP-R cells with a high expression of Hh, showing the integration of drug resistance and Hh signaling. Compared to free TQ, A10-TQ-PBM-NPs were more effective in controlling the Hh pathway. Our findings reveal an effective treatment strategy to inhibit the Hh signaling pathway, thereby suppressing PCa progression.
Deval Prasad Bhattarai, Beom Su Kim, Cells, 9, 2122 (9), 2020
In this work, polythiophene nanoparticles (PTh–NPs) were synthesized by a surfactant-free oxidative chemical polymerization method at 60 °C, using ammonium persulphate as an oxidant. Various physicochemical properties were studied in terms of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, and differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA). Photothermal performance of the as-synthesized PTh–NPs was studied by irradiating near infra-red of 808 nm under different concentration of the substrate and power supply. The photothermal stability of PTh–NPs was also studied. Photothermal effects of the as-synthesized PTh–NPs on colorectal cancer cells (CT-26) were studied at 100 µg/mL concentration and 808 nm NIR irradiation of 2.0 W/cm2 power. Our in vitro results showed remarkable NIR laser-triggered photothermal apoptotic cell death by PTh–NPs. Based on the experimental findings, it is revealed that PTh–NPs can act as a heat mediator and can be an alternative material for photothermal therapy in cancer treatment.
Cristian Petcu, Elvira Alexandrescu, Adriana Bălan, Maria Antonia Tănase, Ludmila Otilia Cinteză, Coatings, 10, 1010 (10), 2020
This study presents the facile sol-gel synthesis of nanostructured coatings for use in water-repellent treatment of travertine stone. The synthesized materials combine surface roughness characteristics with particular chemical compositions to give different hydrophobicity results. The influence of the silica particle coating precursor on the hydrophobicity of the polymeric film was investigated, and the octyl-modified silane was selected for further fabrication of the hybrid coatings. The water repellent properties, together with composition and structural properties of the silane-based hybrid material were measured on model glass surface. The coating with the best characteristics was subsequently deposited onto the travertine stone. The potential applicability of the nanostructured material was evaluated considering both the properties of the coating film and those of the travertine stone subjected to the treatment. The surface texture of the film, water repellent properties and uniformity were determined using scanning electron microscopy, atomic force microscopy, dynamic light scattering and contact angle measurements. The coating’s potential for use in stone conservation was evaluated by assessing its impact on the stone’s visual aspect. All the results obtained from the different types of analyses showed that the octyl-modified silica nanostructured material was highly hydrophobic and compatible both with the travertine stone and with the requirements for use on cultural heritage monuments.
Stephen Yin-Chyuan Jong, Quoc Phuc Nguyen, Applied Nanoscience, 8, 231-239 (3), 2018
Abstract Microemulsion–foam interactions are significant in the low tension gas process, an emerging enhanced oil recovery method. As oil–water–surfactant systems are subjected to various salinity environments and microemulsion phase behavior varies, foam strength has also been observed to vary. This may be due to the action of oil-swollen micelles within liquid lamellae. Winsor Type I microemulsions were characterized according to surface tension, oil content, oil-swollen micelle size, and viscosity. Their impact on foam stability was quantified via dynamic Bikerman-style glass column tests and static decay tests in a physical rock network microfluidic chip to observe behavior and trends across scales. Foam stability tests demonstrated up to 90% decrease in stability with similar trends at both scales as oil-swollen micelle diameter increased from 9.30 to 27.08 nm and concentration decreased over 80%. Decrease in micelle availability and micellar structuring effectiveness, with interaction effects, explains the impact of microemulsion on foam stability.
Illia Dobryden, Elizaveta Mensi, Allan Holmgren, Nils Almqvist, Colloids and Interfaces, 4, 41 (3), 2020
Dispersion and aggregation of nanomagnetite (Fe3O4) and silica (SiO2) particles are of high importance in various applications, such as biomedicine, nanoelectronics, drug delivery, flotation, and pelletization of iron ore. In directly probing nanomagnetite–silica interaction, atomic force microscopy (AFM) using the colloidal probe technique has proven to be a suitable tool. In this work, the interaction between nanomagnetite and silica particles was measured with AFM in aqueous Ca2+ solution at different pH levels. This study showed that the qualitative changes of the interaction forces with pH and Ca2+ concentrations were consistent with the results from zeta-potential measurements. The repulsion between nanomagnetite and silica was observed at alkaline pH and 1 mM Ca2+ concentration, but no repulsive forces were observed at 3 mM Ca2+ concentration. The interaction forces on approach were due to van der Waals and electrical double-layer forces. The good fitting of experimental data to the DLVO model and simulations supported this conclusion. However, contributions from non-DLVO forces should also be considered. It was shown that an increase of Ca2+ concentration from 1 to 3.3 mM led to a less pronounced decrease of adhesion force with increasing pH. A comparison of measured and calculated adhesion forces with a few contact mechanics models demonstrated an important impact of nanomagnetite layer nanoroughness.
Nasser S. Al Maskari, Ahmad Sari, Md Mofazzal Hossain, Ali Saeedi, Quan Xie, Energies, 13, 77 (1), 2019
While the effect of polar-oil component on oil-brine-carbonate system wettability has been extensively investigated, there has been little quantitative analysis of the effect of non-polar components on system wettability, in particular as a function of pH. In this context, we measured the contact angle of non-polar oil on calcite surface in the presence of 10,000 ppm NaCl at pH values of 6.5, 9.5 and 11. We also measured the adhesion of non-polar oil group (–CH3) and calcite using atomic force microscopy (AFM) under the same conditions of contact angle measurements. Furthermore, to gain a deeper understanding, we performed zeta potential measurements of the non-polar oil-brine and brine-calcite interfaces, and calculated the total disjoining pressure. Our results show that the contact angle decreases from 125° to 78° with an increase in pH from 6.5 to 11. AFM measurements show that the adhesion force decreases with increasing pH. Zeta potential results indicate that an increase in pH would change the zeta potential of the non-polar oil-brine and calcite-brine interfaces towards more negative values, resulting in an increase of electrical double layer forces. The total disjoining pressure and results of AFM adhesion tests predict the same trend, showing that adhesion forces decrease with increasing pH. Our results show that the pH increase during low-salinity waterflooding in carbonate reservoirs would lift off non-polar components, thereby lowering residual oil saturation. This physiochemical process can even occur in reservoirs with low concentration of polar components in crude oils.
Wenjie Xia, Siyi Pan, Zhe Cheng, Yan Tian, Xingjian Huang, Foods, 9, 839 (6), 2020
In this study, a novel method called selective proteolysis was applied to the glycinin component of soy protein isolate (SPI), and a degraded glycinin hydrolysate (DGH) was obtained. The effects of high-intensity ultrasound (HIU) treatment (20 kHz at 400 W, 0, 5, 20, and 40 min) on the physical, structural, and aggregation properties of DGH were investigated with the aim to reveal the influence of the selectively hydrolyzing glycinin component on the HIU treatment of soy protein. The effects of HIU on DGH and a control SPI (CSPI) were both time-dependent. HIU induced the formation of soluble aggregates in both samples at an early stage, while it dissociated these newly formed aggregates after a longer duration. Selectively hydrolyzing glycinin contributed to the soluble aggregation by exposing the compact protein structure and producing small protein fractions. The larger extent of hydrophobic interactions and disulfide bonds imparted a higher stability to the soluble protein aggregates formed in DGH. As a result, DGH displayed more ordered secondary structures, a higher solubility, and better gelling properties after the HIU treatment, especially at 20 min. The results of this study will be beneficial to the scientific community as well as industrial application.
Sheng Lu, Feng Zhao, Qiuxin Zhang, P. Chen, International Journal of Molecular Sciences, 19, 2773 (9), 2018
Despite the great progress in the field of drug delivery systems for cancer treatment over the last decade, many challenges still lie ahead, such as low drug loading, deep penetration of tumors, side effects, and the development of drug resistance. A class of cationic membrane lytic peptides has shown potential as an anticancer agent by inducing cancer cell death via membrane disruption; meanwhile, their intrinsic selectivity renders them as having low cytotoxicity towards noncancerous cells. Here, we report the use of a cationic peptide amphiphile (PA), named PAH6, to load doxorubicin (Dox) that is intercalated in an ATP-binding aptamer-incorporated DNA scaffold. The PA contains a cationic lytic sequence, (KLAKLAK)2, a polyhistidine segment for the “proton sponge” effect, and a hydrophobic alkyl tail to drive the self-assembly. Dox-loaded DNA was found to form a spherical nanocomplex (NC) with PAH6 with particle sizes below 100 nm at various ratios. Since the carrier PAH6 is also a therapeutic agent, the drug loadings of the NC reached up to ~86% within the ratios we tested, and Dox was released from the NC in an ATP-rich environment. In vitro studies indicate that the presence of PAH6 could permeabilize cell membranes and kill cells through fast membrane disruption and depolarization of mitochondrial membranes. The cytotoxicity tests were conducted using A549 nonsmall cell lung cancer cells and NIH-3T3 fibroblast cells. PAH6 showed selectivity towards A549 cells. Significantly, the Dox-DNA/PAH6 NC exhibited a synergistic effect against A549 cells, with the IC50 decreased up to ~90% for Dox and ~69% for PAH6 when compared to the IC50 values of the two components, respectively. Furthermore, the selectivity of PAH6 conferred to the complex an improved therapeutic index between A549 and NIH-3T3 cells. A 3D-cultured A549 spheroid model was adopted to test the capability of Dox-DNA/PAH6 for tumor penetration. The PAH6 or Dox-DNA/PAH6 complex was found to break the spheroids into pieces, while Dox-treated spheroids maintained their shapes. In summary, this work provides a new strategy for constructing nanomedicines using therapeutic agents to meet the features required by anticancer treatment.
Maria Ferrà-Cañellas, Maria Llopis-Grimalt, Marta Monjo, Joana Ramis, International Journal of Molecular Sciences, 19, 2881 (10), 2018
The aim of this study was to determine the optimal nanopore diameter of titanium nanostructured surfaces to improve human gingival fibroblast (hGF) response, with the purpose of promoting gingiva integration to dental implant abutments. Two TiO2 nanoporous groups with different diameters (NP-S ~48 nm and NP-B ~74 nm) were grown on Ti foils using an organic electrolyte containing fluoride by electrochemical oxidation, varying the applied voltage and the interelectrode spacing. The surfaces were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), and contact angle. The hGF were cultured onto the different surfaces, and metabolic activity, cytotoxicity, cell adhesion, and gene expression were analyzed. Bigger porous diameters (NP-B) were obtained by increasing the voltage used during anodization. To obtain the smallest diameter (NP-S), apart from lowering the voltage, a lower interelectrode spacing was needed. The greatest surface area and number of peaks was found for NP-B, despite these samples not being the roughest as defined by Ra. NP-B had a better cellular response compared to NP-S. However, these effects had a significant dependence on the cell donor. In conclusion, nanoporous groups with a diameter in the range of 74 nm induce a better hGF response, which may be beneficial for an effective soft tissue integration around the implant.
Farasat Kazmi, Katherine A. Vallis, Balamurugan A. Vellayappan, Aishwarya Bandla, Duan Yukun, Robert Carlisle, International Journal of Molecular Sciences, 21, 429 (2), 2020
Gold nanoparticles (GNPs) have demonstrated significant dose enhancement with kilovoltage (kV) X-rays; however, recent studies have shown inconsistent findings with megavoltage (MV) X-rays. We propose to evaluate the radiosensitization effect on U87 glioblastoma (GBM) cells in the presence of 42 nm GNPs and irradiated with a clinical 6 MV photon beam. Cytotoxicity and radiosensitization were measured using MTS and clonogenic cellular radiation sensitivity assays, respectively. The sensitization enhancement ratio was calculated for 2 Gy (SER2Gy) with GNP (100 μg/mL). Dark field and MTS assays revealed high co-localization and good biocompatibility of the GNPs with GBM cells. A significant sensitization enhancement of 1.45 (p = 0.001) was observed with GNP 100 μg/mL. Similarly, at 6 Gy, there was significant difference in the survival fraction between the GBM alone group (mean (M) = 0.26, standard deviation (SD) = 0.008) and the GBM plus GNP group (M = 0.07, SD = 0.05, p = 0.03). GNPs enabled radiosensitization in U87 GBM cells at 2 Gy when irradiated using a clinical platform. In addition to the potential clinical utility of GNPs, these studies demonstrate the effectiveness of a robust and easy to standardize an in-vitro model that can be employed for future studies involving metal nanoparticle plus irradiation.
Hung-Lun Chu, Ya-Han Chih, Kuang-Li Peng, Chih-Lung Wu, Hui-Yuan Yu, Doris Cheng, Yu-Ting Chou, Jya-Wei Cheng, International Journal of Molecular Sciences, 21, 6810 (18), 2020
A strategy was described to design antimicrobial peptides (AMPs) with enhanced salt resistance and antiendotoxin activities by linking two helical AMPs with the Ala-Gly-Pro (AGP) hinge. Among the designed peptides, KR12AGPWR6 demonstrated the best antimicrobial activities even in high salt conditions (NaCl ~300 mM) and possessed the strongest antiendotoxin activities. These activities may be related to hydrophobicity, membrane-permeability, and α-helical content of the peptide. Amino acids of the C-terminal helices were found to affect the peptide-induced permeabilization of LUVs, the α-helicity of the designed peptides under various LUVs, and the LPS aggregation and size alternation. A possible model was proposed to explain the mechanism of LPS neutralization by the designed peptides. These findings could provide a new approach for designing AMPs with enhanced salt resistance and antiendotoxin activities for potential therapeutic applications.
Liya G. Bobyleva, Sergey A. Shumeyko, Elmira I. Yakupova, Alexey K. Surin, Oxana V. Galzitskaya, Hiroshi Kihara, Alexander A. Timchenko, Maria A. Timchenko, Nikita V. Penkov, Alexey D. Nikulin, Mariya Yu. Suvorina, Nikolay V. Molochkov, Mikhail Yu. Lobanov, Roman S. Fadeev, Ivan M. Vikhlyantsev, Alexander G. Bobylev, International Journal of Molecular Sciences, 22, 731 (2), 2021
This work investigated in vitro aggregation and amyloid properties of skeletal myosin binding protein-C (sMyBP-C) interacting in vivo with proteins of thick and thin filaments in the sarcomeric A-disc. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) found a rapid (5–10 min) formation of large (>2 μm) aggregates. sMyBP-C oligomers formed both at the initial 5–10 min and after 16 h of aggregation. Small angle X-ray scattering (SAXS) and DLS revealed sMyBP-C oligomers to consist of 7–10 monomers. TEM and atomic force microscopy (AFM) showed sMyBP-C to form amorphous aggregates (and, to a lesser degree, fibrillar structures) exhibiting no toxicity on cell culture. X-ray diffraction of sMyBP-C aggregates registered reflections attributed to a cross-β quaternary structure. Circular dichroism (CD) showed the formation of the amyloid-like structure to occur without changes in the sMyBP-C secondary structure. The obtained results indicating a high in vitro aggregability of sMyBP-C are, apparently, a consequence of structural features of the domain organization of proteins of this family. Formation of pathological amyloid or amyloid-like sMyBP-C aggregates in vivo is little probable due to amino-acid sequence low identity (<26%), alternating ordered/disordered regions in the protein molecule, and S–S bonds providing for general stability.
Only abstracts that are published under are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Malvern ZetaSizer in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.