Jasco J-810 - at QuestPair.com/equipment
Jasco J-810
Selling the Jasco J-810?
Sign Up
Can‘t find Jasco J-810 offers?
Post a request
Description
spectrometer, spectropolarimeter, spectropolarimeter, instrument, spectropolarimeter, spectropolarimeter, spectrophotometer
This model was found at
2442 locations
The model is used in
50 countries
Usage per year (up to 2020)
Loading histogram...
125 related research fields
Loading pie chart...

About the Jasco J-810

The model Jasco J-810 was found in 2442 unique locations in 50 countries where it was mentioned from 2002 until recentlyIt is used by scientists in various research fields such as Biochemistry, Molecular Biology, Organic Chemistry, General Chemistry, and Drug Discovery. The model is also used in General Medicine, Pharmaceutical Science, Physical and Theoretical Chemistry, Molecular Medicine, Biophysics, Catalysis, Structural Biology, Analytical Chemistry, General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, Spectroscopy, Pharmacology, Inorganic Chemistry, Cell Biology, Chemistry, Microbiology, Colloid and Surface Chemistry, Immunology, Biotechnology, Bioengineering, Computer Science Applications, Biomaterials, General Materials Science, Genetics, and Materials Chemistry.
Loading map...

Research that uses the Jasco J-810

Xiao-Shan Shi, Yin-Ping Song, Ling-Hong Meng, Sui-Qun Yang, Dun-Jia Wang, Xing-Wang Zhou, Nai-Yun Ji, Bin-Gui Wang, Xiao-Ming Li, Antibiotics, 10, 213 (2), 2021
Carotane sesquiterpenes are commonly found in plants but are infrequently reported in the fungal kingdom. Chemical investigation of Trichoderma virens QA-8, an endophytic fungus associated with the inner root tissue of the grown medicinal herb Artemisia argyi H. Lév. and Vaniot, resulted in the isolation and characterization of five new carotane sesquiterpenes trichocarotins I–M (1–5), which have diverse substitution patterns, and seven known related analogues (6–12). The structures of these compounds were established on the basis of a detailed interpretation of their NMR and mass spectroscopic data, and the structures including the relative and absolute configurations of compounds 1–3, 5, 9, and 10 were confirmed by X-ray crystallographic analysis. In the antibacterial assays, all isolates exhibited potent activity against Escherichia coli EMBLC-1, with MIC values ranging from 0.5 to 32 µg/mL, while 7β-hydroxy CAF-603 (7) strongly inhibited Micrococcus luteus QDIO-3 (MIC = 0.5 µg/mL). Structure-activity relationships of these compounds were discussed. The results from this study demonstrate that the endophytic fungus T. virens QA-8 from the planted medicinal herb A. argyi is a rich source of antibacterial carotane sesquiterpenes, and some of them might be interesting for further study to be developed as novel antibacterial agents.
Jin-Young Kim, Seong-Cheol Park, Gwangbok Noh, Heabin Kim, Su-Hyang Yoo, Il Ryong Kim, Jung Ro Lee, Mi-Kyeong Jang, Antibiotics, 9, 454 (8), 2020
It is difficult to identify new antifungal agents because of their eukaryotic nature. However, antimicrobial peptides can well differentiate among cell types owing to their variable amino acid content. This study aimed to investigate the antifungal effect of Hn-Mc, a chimeric peptide comprised of the N-terminus of HPA3NT3 and the C-terminus of melittin. We evaluated its potent antifungal activity at low minimal inhibitory concentrations (MICs) ranging from 1–16 μM against pathogenic yeast and molds. The cell-type specificity of Hn-Mc was mediated through the formation of a random α-helical structure to mimic the fungal membrane environment. Furthermore, Hn-Mc caused cell death in C. tropicalis and F. oxysporum by inducing apoptosis via the generation of reactive oxygen species (ROS) due to mitochondrial damage. The present results indicate that Hn-Mc has a high affinity for the fungal plasma membrane and induces apoptosis in fungal cells, and provide guidance for the development of new antifungal agents.
Jonggwan Park, Jun Hee Oh, Hee Kyoung Kang, Moon-Chang Choi, Chang Ho Seo, Yoonkyung Park, Antibiotics, 9, 831 (11), 2020
Antibiotic resistance is an important issue affecting humans and livestock. Antimicrobial peptides are promising alternatives to antibiotics. In this study, the antimicrobial peptide Css54, isolated from the venom of C. suffuses, was found to exhibit antimicrobial activity against bacteria such as Listeria monocytogenes, Streptococcus suis, Campylobacter jejuni, and Salmonella typhimurium that cause zoonotic diseases. Moreover, the cytotoxicity and hemolytic activity of Css54 was lower than that of melittin isolated from bee venom. Circular dichroism assays showed that Css54 has an α-helix structure in an environment mimicking that of bacterial cell membranes. We examined the effect of Css54 on bacterial membranes using N-phenyl-1-naphthylamine, 3,3′-dipropylthiadicarbbocyanine iodides, SYTOX green, and propidium iodide. Our findings suggest that the Css54 peptide kills bacteria by disrupting the bacterial membrane. Moreover, Css54 exhibited antibiofilm activity against L. monocytogenes. Thus, Css54 may be useful as an alternative to antibiotics in humans and animal husbandry.
Seong-Cheol Park, Heabin Kim, Jin-Young Kim, Hyeonseok Kim, Gang-Won Cheong, Jung Ro Lee, Mi-Kyeong Jang, Antibiotics, 9, 921 (12), 2020
Several antimicrobial peptides (AMPs) have been discovered, developed, and purified from natural sources and peptide engineering; however, the clinical applications of these AMPs are limited owing to their lack of abundance and side effects related to cytotoxicity, immunogenicity, and hemolytic activity. Accordingly, to improve cell selectivity for pseudin-2, an AMP from Pseudis paradoxa skin, in mammalian cells and pathogenic fungi, the sequence of pseudin-2 was modified by alanine or lysine at each position of two amino acids within the leucine-zipper motif. Alanine-substituted variants were highly selective toward fungi over HaCaT and erythrocytes and maintained their antifungal activities and mode of action (membranolysis). However, the antifungal activities of lysine-substituted peptides were reduced, and the compound could penetrate into fungal cells, followed by induction of mitochondrial reactive oxygen species and cell death. In vivo antifungal assays of analogous peptide showed excellent antifungal efficiency in a Candida tropicalis skin infection mouse model. Our results demonstrated the usefulness of selective amino acid substitution in the repeated sequence of the leucine-zipper motif for the design of AMPs with potent antimicrobial activities and low toxicity.
undefined Chen, undefined Chien, undefined Cho, undefined Chang, undefined Hsu, Antioxidants, 8, 461 (10), 2019
Sulfur is an essential nutrient that can be converted into utilizable metabolic forms to produce sulfur-containing metabolites in plant. Adenosine 5′-phosphosulfate (APS) reductase (APR) plays a vital role in catalyzing the reduction of activated sulfate to sulfite, which requires glutathione. Previous studies have shown that the C-terminal domain of APR acts as a glutathione-dependent reductase. The crystal structure of the C-terminal redox domain of Arabidopsis APR1 (AtAPR1) shows a conserved α/β thioredoxin fold, but not a glutaredoxin fold. Further biochemical studies of the redox domain from AtAPR1 provided evidence to support the structural observation. Collectively, our results provide structural and biochemical information to explain how the thioredoxin fold exerts the glutaredoxin function in APR.
Antonio Castro Marin, Fabio Chinnici, Applied Sciences, 10, 6877 (19), 2020
Chitosan is a natural biopolymer, which is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines. To fill the gap on this aspect, this work focused on changes in color, phenolic and volatile composition of red wines treated for 7 days with 0.5 g/L of fungoid chitosan, added in both undissolved and dissolved form. When compared to untreated samples, minor changes in phenolic compounds were observed in chitosan added wines, mainly involving hydroxycinnamic acids and flavonols, with reductions of 3 mg/L and 1.5 mg/L respectively. Ellagic acid, however, was absorbed up to 2 mg/L, which reduced his content by 40%. Since some of these compounds actively participate to co-pigmentation with anthocyanins, the color of wines was influenced accordingly. Chitosan marginally absorbed some aroma compounds, including volatile phenols whose amounts were slightly but significantly decreased after treatment. Overall, at the dose adopted, chitosan appeared suited to be used in red winemaking for microbial or physical stability purposes, not severely impairing the quality parameters of the final wines.
Ah-Reum Han, Yun-Seo Kil, Min Jeong Hong, Jisu Park, Hyeon Hwa Park, Chang Hyun Jin, Joo-Won Nam, Jin-Baek Kim, Applied Sciences, 10, 8656 (23), 2020
Wheat (Triticum aestivum Linn.; Poaceae) is a very common and important food grain and ranks second in total cereal crop production. A large amount of wheat hull is produced after threshing that, as the non-food part of wheat, is agro-waste, accounting for 15~20% of the wheat. This study aimed at biologically and phytochemically investigating wheat hull for its valorization as a by-product. In our ongoing search for natural product-derived anti-inflammatory agents, T. aestivum hull was evaluated for its nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-activated RAW 264.7 cells, and the phytochemical investigation of the ethyl acetate fraction showing inhibitory effect led to the isolation of a flavone (1) and seven flavonolignans (2–8). Compounds 2–8 have not yet been isolated from Triticum species. All compounds were evaluated for their LPS-induced NO production inhibition, and 1, 2, 4, 6, and 8 exhibited inhibitory effects with IC50 values ranging from 24.14 to 58.95 μM. These results suggest the potential of using T. aestivum hull as a source for producing anti-inflammatory components, enhancing its valorization as a by-product.
Marina Warepam, Khurshid Ahmad, Safikur Rahman, Hamidur Rahaman, Kritika Kumari, Laishram Rajendrakumar Singh, Biomolecules, 10, 286 (2), 2020
Most of the human diseases related to various proteopathies are confined to the brain, which leads to the development of various forms of neurological disorders. The human brain consists of several osmolytic compounds, such as N-Acetylaspartate (NAA), myo-inositol (mI), glutamate (Glu), glutamine (Gln), creatine (Cr), and choline-containing compounds (Cho). Among these osmolytes, the level of NAA drastically decreases under neurological conditions, and, hence, NAA is considered to be one of the most widely accepted neuronal biomarkers in several human brain disorders. To date, no data are available regarding the effect of NAA on protein stability, and, therefore, the possible effect of NAA under proteopathic conditions has not been fully uncovered. To gain an insight into the effect of NAA on protein stability, thermal denaturation and structural measurements were carried out using two model proteins at different pH values. The results indicate that NAA increases the protein stability with an enhancement of structure formation. We also observed that the stabilizing ability of NAA decreases in a pH-dependent manner. Our study indicates that NAA is an efficient protein stabilizer at a physiological pH.
Peder A. G. Lillebostad, Arne Raasakka, Silje J. Hjellbrekke, Sudarshan Patil, Trude Røstbø, Hanne Hollås, Siri A. Sakya, Peter D. Szigetvari, Anni Vedeler, Petri Kursula, Biomolecules, 10, 660 (4), 2020
The functions of the annexin family of proteins involve binding to Ca2+, lipid membranes, other proteins, and RNA, and the annexins share a common folded core structure at the C terminus. Annexin A11 (AnxA11) has a long N-terminal region, which is predicted to be disordered, binds RNA, and forms membraneless organelles involved in neuronal transport. Mutations in AnxA11 have been linked to amyotrophic lateral sclerosis (ALS). We studied the structure and stability of AnxA11 and identified a short stabilising segment in the N-terminal end of the folded core, which links domains I and IV. The crystal structure of the AnxA11 core highlights main-chain hydrogen bonding interactions formed through this bridging segment, which are likely conserved in most annexins. The structure was also used to study the currently known ALS mutations in AnxA11. Three of these mutations correspond to buried Arg residues highly conserved in the annexin family, indicating central roles in annexin folding. The structural data provide starting points for detailed structure–function studies of both full-length AnxA11 and the disease variants being identified in ALS.
Szilvia Bősze, Ferenc Zsila, Beáta Biri-Kovács, Bálint Szeder, Zsuzsa Majer, Ferenc Hudecz, Katalin Uray, Biomolecules, 10, 721 (5), 2020
Regions of the Herpes simplex virus-1 (HSV-1) glycoprotein D (gD) were chosen to design carrier peptides based on the known tertiary structure of the virus entry receptor complexes. These complexes consist of the following: HSV-1 gD–nectin-1 and HSV-1 gD–herpesvirus entry mediator (HVEM). Three sets of peptides were synthesised with sequences covering the (i) N-terminal HVEM- and nectin-1 binding region -5–42, (ii) the 181–216 medium region containing nectin-1 binding sequences and (iii) the C-terminal nectin-1 binding region 214–255. The carrier candidates were prepared with acetylated and 5(6)-carboxyfluorescein labelled N-termini. The peptides were chemically characterised and their conformational features in solution were also determined. In vitro internalisation profile and intracellular localisation were evaluated on SH-SY5Y neuroblastoma cells. Peptide originated from the C-terminal region 224–247 of the HSV-1 gD showed remarkable internalisation compared to the other peptides with low to moderate entry. Electronic circular dichroism secondary structure studies of the peptides revealed that the most effectively internalised peptides exhibit high helical propensity at increasing TFE concentrations. We proved that oligopeptides derived from the nectin-1 binding region are promising candidates—with possibility of Lys237Arg and/or Trp241Phe substitutions—for side-reaction free conjugation of bioactive compounds—drugs or gene therapy agents—as cargos.
Marta Rubio-Camacho, José A. Encinar, María José Martínez-Tomé, Rocío Esquembre, C. Reyes Mateo, Biomolecules, 10, 1015 (7), 2020
The interaction of temozolomide (TMZ) (the main chemotherapeutic agent for brain tumors) with blood components has not been studied at the molecular level to date, even though such information is essential in the design of dosage forms for optimal therapy. This work explores the binding of TMZ to human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP), as well as to blood cell-mimicking membrane systems. Absorption and fluorescence experiments with model membranes indicate that TMZ does not penetrate into the lipid bilayer, but binds to the membrane surface with very low affinity. Fluorescence experiments performed with the plasma proteins suggest that in human plasma, most of the bound TMZ is attached to HSA rather than to AGP. This interaction is moderate and likely mediated by hydrogen-bonding and hydrophobic forces, which increase the hydrolytic stability of the drug. These experiments are supported by docking and molecular dynamics simulations, which reveal that TMZ is mainly inserted in the subdomain IIA of HSA, establishing π-stacking interactions with the tryptophan residue. Considering the overexpression of albumin receptors in tumor cells, our results propose that part of the administered TMZ may reach its target bound to plasma albumin and suggest that HSA-based nanocarriers are suitable candidates for designing biomimetic delivery systems that selectively transport TMZ to tumor cells.
Marc A. Sprague-Piercy, Jan C. Bierma, Marquise G. Crosby, Brooke P. Carpenter, Gemma R. Takahashi, Joana Paulino, Ivan Hung, Rongfu Zhang, John E. Kelly, Natalia Kozlyuk, Xi Chen, Carter T. Butts, Rachel W. Martin, Biomolecules, 10, 1069 (7), 2020
The Droserasins, aspartic proteases from the carnivorous plant Drosera capensis, contain a 100-residue plant-specific insert (PSI) that is post-translationally cleaved and independently acts as an antimicrobial peptide. PSIs are of interest not only for their inhibition of microbial growth, but also because they modify the size of lipid vesicles and strongly interact with biological membranes. PSIs may therefore be useful for modulating lipid systems in NMR studies of membrane proteins. Here we present the expression and biophysical characterization of the Droserasin 1 PSI (D1 PSI.) This peptide is monomeric in solution and maintains its primarily α -helical secondary structure over a wide range of temperatures and pH values, even under conditions where its three disulfide bonds are reduced. Vesicle fusion assays indicate that the D1 PSI strongly interacts with bacterial and fungal lipids at pH 5 and lower, consistent with the physiological pH of D. capensis mucilage. It binds lipids with a variety of head groups, highlighting its versatility as a potential stabilizer for lipid nanodiscs. Solid-state NMR spectra collected at a field strength of 36 T, using a unique series-connected hybrid magnet, indicate that the peptide is folded and strongly bound to the membrane. Molecular dynamics simulations indicate that the peptide is stable as either a monomer or a dimer in a lipid bilayer. Both the monomer and the dimer allow the passage of water through the membrane, albeit at different rates.
Ádám Szappanos, Attila Mándi, Katalin Gulácsi, Erika Lisztes, Balázs István Tóth, Tamás Bíró, Anita Kónya-Ábrahám, Attila Kiss-Szikszai, Attila Bényei, Sándor Antus, Tibor Kurtán, Biomolecules, 10, 1462 (10), 2020
Racemic chiral O,N-heterocycles containing 2-arylchroman or 2-aryl-2H-chromene subunit condensed with morpholine, thiazole, or pyrrole moieties at the C-3-C-4 bond were synthesized with various substitution patterns of the aryl group by the cyclization of cis- or trans-3-aminoflavanone analogues. The 3-aminoflavanone precursors were obtained in a Neber rearrangement of oxime tosylates of flavanones, which provided the trans diastereomer as the major product and enabled the isolation of both the cis- and trans-diastereomers. The cis- and trans-aminoflavanones were utilized to prepare three diastereomers of 5-aryl-chromeno[4,3-b][1,4]oxazines. Antiproliferative activity of the condensed heterocycles and precursors was evaluated against A2780 and WM35 cancer cell lines. For a 3-(N-chloroacetylamino)-flavan-4-ol derivative, showing structural analogy with acyclic acid ceramidase inhibitors, 0.15 μM, 3.50 μM, and 6.06 μM IC50 values were measured against A2780, WM35, and HaCat cell lines, and apoptotic mechanism was confirmed. Low micromolar IC50 values down to 2.14 μM were identified for the thiazole- and pyrrole-condensed 2H-chromene derivatives. Enantiomers of the condensed heterocycles were separated by HPLC using chiral stationary phase, HPLC-ECD spectra were recorded and TDDFT-ECD calculations were performed to determine the absolute configuration and solution conformation. Characteristic ECD transitions of the separated enantiomers were correlated with the absolute configuration and effect of substitution pattern on the HPLC elution order was determined.
Maria Grazia Murrali, Isabella C. Felli, Roberta Pierattelli, Biomolecules, 10, 1541 (11), 2020
Direct interaction between intrinsically disordered proteins (IDPs) is often difficult to characterize hampering the elucidation of their binding mechanism. Particularly challenging is the study of fuzzy complexes, in which the intrinsically disordered proteins or regions retain conformational freedom within the assembly. To date, nuclear magnetic resonance spectroscopy has proven to be one of the most powerful techniques to characterize at the atomic level intrinsically disordered proteins and their interactions, including those cases where the formed complexes are highly dynamic. Here, we present the characterization of the interaction between a viral protein, the Early region 1A protein from Adenovirus (E1A), and a disordered region of the human CREB-binding protein, namely the fourth intrinsically disordered linker CBP-ID4. E1A was widely studied as a prototypical viral oncogene. Its interaction with two folded domains of CBP was mapped, providing hints for understanding some functional aspects of the interaction with this transcriptional coactivator. However, the role of the flexible linker connecting these two globular domains of CBP in this interaction was never explored before.
Ganna Petruk, Jitka Petrlova, Firdaus Samsudin, Rita Del Giudice, Peter J. Bond, Artur Schmidtchen, Biomolecules, 10, 1572 (11), 2020
Peptide oligomerization dynamics affects peptide structure, activity, and pharmacodynamic properties. The thrombin C-terminal peptide, TCP-25 (GKYGFYTHVFRLKKWIQKVIDQFGE), is currently in preclinical development for improved wound healing and infection prevention. It exhibits turbidity when formulated at pH 7.4, particularly at concentrations of 0.3 mM or more. We used biochemical and biophysical approaches to explore whether the peptide self-associates and forms oligomers. The peptide showed a dose-dependent increase in turbidity as well as α-helical structure at pH 7.4, a phenomenon not observed at pH 5.0. By analyzing the intrinsic tryptophan fluorescence, we demonstrate that TCP-25 is more stable at high concentrations (0.3 mM) when exposed to high temperatures or a high concentration of denaturant agents, which is compatible with oligomer formation. The denaturation process was reversible above 100 µM of peptide. Dynamic light scattering demonstrated that TCP-25 oligomerization is sensitive to changes in pH, time, and temperature. Computational modeling with an active 18-mer region of TCP-25 showed that the peptide can form pH-dependent higher-order end-to-end oligomers and micelle-like structures, which is in agreement with the experimental data. Thus, TCP-25 exhibits pH- and temperature-dependent dynamic changes involving helical induction and reversible oligomerization, which explains the observed turbidity of the pharmacologically developed formulation.
Xiaomin Guo, Tiantian Yan, Jing Rao, Xin Yue, Xiong Pei, Jiahui Deng, Wangsheng Sun, Wenle Yang, Bangzhi Zhang, Junqiu Xie, Biomolecules, 11, 761 (5), 2021
The dramatic increase in antimicrobial resistance (AMR) highlights an urgent need to develop new antimicrobial therapies. Thus, antimicrobial peptides (AMPs) have emerged as promising novel antibiotic alternatives. Feleucin-K3 is an amphiphilic α-helical nonapeptide that has powerful antimicrobial activity. In our previous study, it was found that the fourth residue of Feleucin-K3 is important for antimicrobial activity. After α-(4-pentenyl)-Ala was introduced into this position, both the antimicrobial activity and stability were greatly improved. Herein, to improve the limitations of Feleucin-K3, this unnatural amino acid was further introduced into different positions of Feleucin-K3. Among these synthetic Feleucin-K3 analogs, the N-terminal-substituted analog Feleucin-K65 (K65) and C-terminal-substituted analog Feleucin-K70 (K70) had preferable antimicrobial activity. In particular, their antimicrobial activities against multidrug-resistant bacteria were more potent than that of antibiotics. The stabilities of these peptides in salt and serum environments were improved compared with those of Feleucin-K3. In addition, these analogs had low hemolytic activity and AMR. More importantly, they effectively inhibited biofilm formation and exhibited considerable efficacy compared with traditional antibiotics against biofilm infection caused by methicillin-resistant Staphylococcus aureus (MRSA). In antimicrobial mechanism studies, K65 and K70 mainly permeated the outer membrane and depolarized the cytoplasmic membrane, resulting in cellular component leakage and cell death. In summary, analogs K65 and K70 are potential antimicrobial alternatives to solve the antibiotic crisis.
Stefan Gaussmann, Mohanraj Gopalswamy, Maike Eberhardt, Maren Reuter, Peijian Zou, Wolfgang Schliebs, Ralf Erdmann, Michael Sattler, Frontiers in Cell and Developmental Biology, 9, 2021
Human PEX5 and PEX14 are essential components of the peroxisomal translocon, which mediates import of cargo enzymes into peroxisomes. PEX5 is a soluble receptor for cargo enzymes comprised of an N-terminal intrinsically disordered domain (NTD) and a C-terminal tetratricopeptide (TPR) domain, which recognizes peroxisomal targeting signal 1 (PTS1) peptide motif in cargo proteins. The PEX5 NTD harbors multiple WF peptide motifs (WxxxF/Y or related motifs) that are recognized by a small globular domain in the NTD of the membrane-associated protein PEX14. How the PEX5 or PEX14 NTDs bind to the peroxisomal membrane and how the interaction between the two proteins is modulated at the membrane is unknown. Here, we characterize the membrane interactions of the PEX5 NTD and PEX14 NTD in vitro by membrane mimicking bicelles and nanodiscs using NMR spectroscopy and isothermal titration calorimetry. The PEX14 NTD weakly interacts with membrane mimicking bicelles with a surface that partially overlaps with the WxxxF/Y binding site. The PEX5 NTD harbors multiple interaction sites with the membrane that involve a number of amphipathic α-helical regions, which include some of the WxxxF/Y-motifs. The partially formed α-helical conformation of these regions is stabilized in the presence of bicelles. Notably, ITC data show that the interaction between the PEX5 and PEX14 NTDs is largely unaffected by the presence of the membrane. The PEX5/PEX14 interaction exhibits similar free binding enthalpies, where reduced binding enthalpy in the presence of bicelles is compensated by a reduced entropy loss. This demonstrates that docking of PEX5 to PEX14 at the membrane does not reduce the overall binding affinity between the two proteins, providing insights into the initial phase of PEX5-PEX14 docking in the assembly of the peroxisome translocon.
Eric Kohn, Joshua Lee, Anthony Calabro, Timothy Vaden, Gregory Caputo, Biomolecules, 8, 126 (4), 2018
We have investigated myoglobin protein denaturation using the zwitterionic detergent Empigen BB (EBB, N,N-Dimethyl-N-dodecylglycine betaine). A combination of absorbance, fluorescence, and circular dichroism spectroscopic measurements elucidated the protein denaturation and heme dissociation from myoglobin. The results indicated that Empigen BB was not able to fully denature the myoglobin structure, but apparently can induce the dissociation of the heme group from the protein. This provides a way to estimate the heme binding free energy, ΔGdissociation. As ionic liquids (ILs) have been shown to perturb the myoglobin protein, we have investigated the effects of the ILs 1-butyl-3-methylimidazolium chloride (BMICl), 1-ethyl-3-methylimidazolium acetate (EMIAc), and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) in aqueous solution on the ΔGdissociation values. Absorbance experiments show the ILs had minimal effect on ΔGdissociation values when compared to controls. Fluorescence and circular dichroism data confirm the ILs have no effect on heme dissociation, demonstrating that low concentrations ILs do not impact the heme dissociation from the protein and do not significantly denature myoglobin on their own or in combination with EBB. These results provide important data for future studies of the mechanism of IL-mediated protein stabilization/destabilization and biocompatibility studies.
Joshua Y. Lee, Katherine M. Selfridge, Eric M. Kohn, Timothy D. Vaden, Gregory A. Caputo, Biomolecules, 9, 264 (7), 2019
The unique electrochemical properties of ionic liquids (ILs) have motivated their use as solvents for organic synthesis and green energy applications. More recently, their potential in pharmaceutical chemistry has prompted investigation into their effects on biomolecules. There is evidence that some ILs can destabilize proteins via a detergent-like manner; however, the mechanism still remains unknown. Our hypothesis is that if ILs are denaturing proteins via a detergent-like mechanism, detergent-mediated protein unfolding should be enhanced in the presence of ILs. The properties of myoglobin was examined in the presence of a zwitterionic (N,N-dimethyl-N-dodecylglycine betaine (Empigen BB®, EBB)), cationic (tetradecyltrimethylammonium bromide (TTAB)), and anionic (sodium dodecyl sulfate (SDS)) detergent as well as ILs based on alkylated imidazolium chlorides. Protein structure was measured through a combination of absorbance, fluorescence, and circular dichroism (CD) spectroscopy: absorbance and CD were used to monitor heme complexation to myoglobin, and tryptophan fluorescence quenching was used as an indicator for heme dissociation. Notably, the detergents tested did not fully denature the protein but instead resulted in loss of the heme group. At low IL concentrations, heme dissociation remained a traditional, cooperative process; at high concentrations, ILs with increased detergent-like character exhibited a more complex pattern, which is most likely attributable to micellization of the ionic liquids or direct denaturation or heme dissociation induced by the ILs. These trends were consistent across all species of detergents. 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence was further used to characterize micelle formation in aqueous solutions containing detergent and ionic liquid. The dissociation thermodynamics show that EBB- and TTAB-induced dissociation of heme is not significantly impacted by room temperature ionic liquids (RTILs), whereas SDS-induced dissociation is more dramatically impacted by all RTILs examined. Together, these results indicate a complex interaction of detergents, likely based on headgroup charge, and the active component of RTILs to influence heme dissociation and potentially protein denaturation.
Karina D. Garcia-Orozco, Francisco Cinco-Moroyoqui, Lucía T. Angulo-Sanchez, Enrique Marquez-Rios, Armando Burgos-Hernandez, Jose L. Cardenas-Lopez, Carolina Gomez-Aguilar, David O. Corona-Martinez, Gloria Saab-Rincon, Rogerio R. Sotelo-Mundo, Biomolecules, 9, 674 (11), 2019
(1) Background: Lipases and esterases are important enzymes that share the α/β hydrolase fold. The activity and cellular localization are important characteristics to understand the role of such enzymes in an organism. (2) Methods: Bioinformatic and biochemical tools were used to describe a new α/β hydrolase from a Litopenaeus vannamei transcriptome (LvFHS for Family Serine Hydrolase). (3) Results: The enzyme was obtained by heterologous overexpression in Escherichia coli and showed hydrolytic activity towards short-chain lipid substrates and high affinity to long-chain lipid substrates. Anti-LvFHS antibodies were produced in rabbit that immunodetected the LvFSH enzyme in several shrimp tissues. (4) Conclusions: The protein obtained and analyzed was an α/β hydrolase with esterase and lipase-type activity towards long-chain substrates up to 12 carbons; its immunodetection in shrimp tissues suggests that it has an intracellular localization, and predicted roles in energy mobilization and signal transduction.
Only abstracts that are published under https://creativecommons.org/licenses/by/4.0/ are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Jasco J-810 in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.