Beckman Coulter Cytomics - at QuestPair.com/equipment
Beckman Coulter Cytomics
Selling the Beckman Coulter Cytomics?
Sign Up
Can‘t find Beckman Coulter Cytomics offers?
Post a request
Description
flow cytometer, flow cytometer, flow cytometer, flow cytometer, cytometer
This model was found at
1628 locations
The model is used in
53 countries
Usage per year (up to 2020)
Loading histogram...
143 related research fields
Loading pie chart...

About the Beckman Coulter Cytomics

The model Beckman Coulter Cytomics was found in 1628 unique locations in 53 countries where it was mentioned from 2002 until recentlyIt is used by scientists in various research fields such as General Medicine, Cancer Research, Oncology, Molecular Biology, and Immunology. The model is also used in Molecular Medicine, Immunology and Allergy, Biochemistry, Pharmacology, Genetics, Cell Biology, Organic Chemistry, General Biochemistry, Genetics and Molecular Biology, Pharmaceutical Science, Drug Discovery, Physical and Theoretical Chemistry, General Chemistry, Hematology, Biotechnology, Catalysis, Infectious Diseases, Cellular and Molecular Neuroscience, Biomedical Engineering, Pharmacology (medical), Inorganic Chemistry, Bioengineering, Computer Science Applications, Analytical Chemistry, Medicine (miscellaneous), and Physiology.
Loading map...

Research that uses the Beckman Coulter Cytomics

Shiro Suzuki, Laigeng Li, Ying-Hsuan Sun, Vincent L. Chiang, Plant Physiology, 142, 1233-1245 (3), 2006
Abstract Wood from forest trees modified for more cellulose or hemicelluloses could be a major feedstock for fuel ethanol. Xylan and glucomannan are the two major hemicelluloses in wood of angiosperms. However, little is known about the genes and gene products involved in the synthesis of these wood polysaccharides. Using Populus trichocarpa as a model angiosperm tree, we report here a systematic analysis in various tissues of the absolute transcript copy numbers of cellulose synthase superfamily genes, the cellulose synthase (CesA) and the hemicellulose-related cellulose synthase-like (Csl) genes. Candidate Csl genes were characterized for biochemical functions in Drosophila Schneider 2 (S2) cells. Of the 48 identified members, 37 were found expressed in various tissues. Seven CesA genes are xylem specific, suggesting gene networks for the synthesis of wood cellulose. Four Csl genes are xylem specific, three of which belong to the CslA subfamily. The more xylem-specific CslA subfamily is represented by three types of members: PtCslA1, PtCslA3, and PtCslA5. They share high sequence homology, but their recombinant proteins produced by the S2 cells exhibited distinct substrate specificity. PtCslA5 had no catalytic activity with the substrates for xylan or glucomannan. PtCslA1 and PtCslA3 encoded mannan synthases, but PtCslA1 further encoded a glucomannan synthase for the synthesis of (1→4)-β-d-glucomannan. The expression of PtCslA1 is most highly xylem specific, suggesting a key role for it in the synthesis of wood glucomannan. The results may help guide further studies to learn about the regulation of cellulose and hemicellulose synthesis in wood.
Jiemin Ding, Min Liu, Zihua Xuan, Meng li Liu, Ning Wang, Xiaoyi Jia, Evidence-Based Complementary and Alternative Medicine, 2020, 1-10, 2020
Aims. The aim of this study was to evaluate the protective effects of Er Miao San (EMS) and the regulative function of bone marrow-derived dendritic cells (BMDCs) on adjuvant arthritis (AA) in rats. Methods. The ethyl acetate part of EMS (3 g/kg, 1.5 g/kg, and 0.75 g/kg) was orally administered from day 15 after immunization to day 29. The polyarthritis index and paw swelling were measured, the ankle joint pathological changes were observed using hematoxylin-eosin (HE) staining, and the spleen and thymus index were determined. Moreover, T and B cell proliferation were determined using the CCK-8 assay. The expression of BMDC surface costimulatory molecules and inflammatory factors were determined using flow cytometry and ELISA kits, respectively. Results. Compared with the AA model rats, the ethyl acetate fraction of EMS obviously reduced paw swelling (from 1.0 to 0.7) and the polyarthritis index (from 12 to 9) P < 0.01 and improved the severity of histopathology P < 0.01 . The treatment using ethyl acetate fraction of EMS significantly reduced the spleen and thymus index P < 0.01 and inhibited T and B cell proliferation P < 0.01 . Moreover, EMS significantly modulated the expression of surface costimulatory molecules in BMDCs, including CD40, CD80, CD86, and major histocompatibility complex class II (MHC-II) P < 0.01 . The results also showed that the ethyl acetate part of EMS significant inhibited the levels of proinflammatory cytokines interleukin- (IL-) 23 tumor necrosis factor- (TNF-) α and inflammatory factor prostaglandin (PG) E2 in the supernatant of BMDCs. However, the level of anti-inflammatory cytokine IL-10 was significantly increased P < 0.01 . Conclusion. These results suggest that the ethyl acetate part of EMS has better protective effects on AA rats, probably by regulating the function of BMDCs and modulating the balance of cytokines.
Rahmat Dani Satria, Tzu-Wen Huang, Ming-Kai Jhan, Ting-Jing Shen, Po-Chun Tseng, Yun-Ting Wang, Zhen-Yu Yang, Chung-Hsi Hsing, Chiou-Feng Lin, Journal of Immunology Research, 2021, 1-10, 2021
During the acute febrile phase of dengue virus (DENV) infection, viremia can cause severe systemic immune responses accompanied by hematologic disorders. This study investigated the potential induction and mechanism of the cytopathic effects of DENV on peripheral blood cells ex vivo. At one day postinfection, there was viral nonstructural protein NS1 but no further virus replication measured in the whole blood culture. Notably, DENV exposure caused significant vacuolization in monocytic phagocytes. With a minor change in the complete blood cell count, except for a minor increase in neutrophils and a significant decrease in monocytes, the immune profiling assay identified several changes, particularly a significant reduction in CD14-positive monocytes as well as CD11c-positive dendritic cells. Abnormal production of TNF-α was highly associated with the induction of vacuolization. Manipulating TNF-α expression resulted in cytopathogenic effects. These results demonstrate the potential hematological damage caused by ex vivo DENV-induced TNF-α.
Lei Zhao, Wei Chen, Guoliang Qiao, Jiangping Wu, Duo Yang, Xiaoli Wang, Xinna Zhou, Shuo Wang, Jun Ren, 2020
Abstract Background Our understanding of sepsis-associated immune impairment is incomplete. The objective of this retrospective study was to investigate correlations of sepsis clinical manifestations with peripheral blood lymphocyte subpopulations in lymphocyte immunity. Methods Twenty individuals without sepsis and eighteen with sepsis were enrolled. Lymphocyte phenotypes (CD3+, CD4+, CD8+, CD3-CD16+CD56+, CD19+, CD4+CD25+CD127+, CD8+CD28-, and CD8+CD28+) were assessed by flow cytometry. Fresh fecal bacteria cue proportion was measured to determine intestinal dysbacteriosis. Results Compared with the non-sepsis group, the sepsis patients had clearly lower proportions of CD3+, CD4+ and CD8+CD28+ cells and substantially higher proportions of CD19+ cells (p<0.05). Among 38 patients with infection, CD4+ cells and CD8+CD28+ cells in a survivor group had significantly higher presence compared with patients who had died (p<0.05), The subgroup analysis results showed that CD4+ cells in the survivor subgroups were higher than those in the deceased subgroups (p<0.05). CD8+CD28+ cells in the non-sepsis survivor subgroup were higher than those in the deceased subgroups (p<0.05).. Bivariate correlation analysis showed that the intestinal dysbacteriosis was significantly correlated with the severity of sepsis and its prognosis (r2=0.2788, p=0.001, r2=0.1764, p=0.009, respectively). CD4+, CD19+, and CD8+CD28+ cells were significantly correlated with intestinal dysbacteriosis (r2=0.1024, p=0.049, r2=0.1063, p=0.046, r2=0.1909, p=0.006, respectively). Conclusions In conclusion, the lymphocyte populations of CD3+, CD4+, CD8+CD28+ and CD19+ cells were accessible for predicting the severity and mortality of sepsis patients. In addition, intestinal dysbacteriosis had a significant impact on the immune system of sepsis patients as revealed by peripheral blood lymphocyte population.
Yan-chun Qu, Ying Zou, Shuai Shi, Yanjuan Zhu, Yi-hong Liu, Li-rong Liu, Xiao-hua Zheng, Hui-hui Chen, Hai-bo Zhang, 2020
Abstract Background: Traditional Chinese Medicine (TCM) prescriptions should be decided according to the TCM treatment principle, and the warming-yang or cooling-heat should be the guide of treatment principle outline. Methods: In order to identify which treatment principle, warming-yang or cooling-heat should be combined with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC), we combined the typical warming-yang drug, Shen-fu (SF), and the typical cooling-heat drug, Qing-kai-ling (QKL) with gefitinib in resistant NSCLC models. Results: The results demonstrated that QKL combined with gefitinib induced significantly increased cell viability inhibition and apoptosis in A549 cell line and significantly smaller tumor volume and lower tumor weight in H1975 xenograft transplanted nude mice. On the contrary, SF combined with gefitinib had significant antagonism effect on both cell viability inhibition and apoptosis in vitro , and on tumor weight in vivo . EGFR phosphorylation inhibition and the downstream PI3K/AKT and RAS/RAF/ERK pathway inhibition served an important role in the synergism effect between QKL and gefitinib in H1975 xenograft transplanted nude mice. Conclusions: The present study indicated that cooling-heat TCM treatment principle may reverse or delay NSCLC resistance to EGFR-TKIs, and combination of them warrants further study.
Weiguo Lao, Yi Tan, Michael Johnson, Yan Li, Yiguang Lin, Linda Xiao, Xianqin Qu, 2020
Abstract Background: Osteoporosis is a metabolic disease affecting the bone mineral density associated with increased adiposity in the aging population with obesity. The nutrients to control osteoblast and adipocyte differentiation from a common precursor, the pluripotent mesenchymal stem cell (MSC), may be a promising therapy for osteoporosis. Previously, we have shown that green tea polyphenols (GTP) exert anti-adipogenic effects on preadipocyte proliferation. In the present study, we investigated regulatory effects of GTP on osteogenesis and adipogenesis during early differentiation of human adipose tissue-derived stem cells (hADSCs). Methods: GTP at concentrations of 1 and 10 µg/ml was incubated with primary hADSCs in presence or absence of pioglitazone (100 µmol) during hADSCs differentiation. Adipogenesis of hADSCs was determined by Oil Red O staining and measurement of the cellular triglyceride synthesis in mature adipocyte. Alkaline phosphatase (ALP) assay and the measurement of intracellular calcium were utilized to determine osteoporosis of hADSCs. Immunofluorescence staining and qRT-PCR were employed to detect PPARγ-CEBPA regulated adipogenic pathway and the RUNX2-BMP2 mediated osteogenic pathway. Results: GTP treatment significantly decreased lipid accumulation and the cellular triglyceride synthesis in mature adipocytes and attenuated pioglitazone-induced adipogenesis in a dose-dependent manner. GTP downregulated protein and mRNA expression of Pparγ and attenuated pioglitazone-stimulated Cebpa expression in mature adipocytes. Concurrently, measurements of calcium content and ALP activity showed that GTP treatment significantly enhanced hADSCs differentiation into osteocytes compared with the control and pioglitazone-treated cells. Meanwhile, GTP upregulated protein and mRNA expression of RunX2 and Bmp2 compared to the control and GTP at 10 µg/mL significantly attenuated the decreased mRNA expression of Runx2 and Bmp2 by pioglitazone. Conclusions: The present study demonstrated that GTP possess a greater ability to facilitate osteogenesis and simultaneously inhibit hADSCs differentiation into the adipogenic lineage through upregulating the RUNX2-BMP2 mediated osteogenic pathway and suppressing PPARγ-induced signaling of adipogenesis. The findings of this study highlight that GTP may be a therapeutic intervention to combat osteoporosis associated obesity.
Ya An Tsai, Tianshu Li, Lucia A. Torres-Fernández, Stefan C. Weise, Waldemar Kolanus, Shinji Takeoka, Frontiers in Bioengineering and Biotechnology, 9, 2021
Three-dimensional (3D) culture bridges and minimizes the gap between in vitro and in vivo states of cells and various 3D culture systems have been developed according to different approaches. However, most of these approaches are either complicated to operate, or costive to scale up. Therefore, a simple method for stem cell spheroid formation and preservation was proposed using poly(D,L-lactic acid) porous thin film (porous nanosheet), which were fabricated by a roll-to-roll gravure coating method combining a solvent etching process. The obtained porous nanosheet was less than 200 nm in thickness and had an average pore area of 6.6 μm2 with a porosity of 0.887. It offered a semi-adhesive surface for stem cells to form spheroids and maintained the average spheroid diameter below 100 μm for 5 days. In comparison to the spheroids formed in suspension culture, the porous nanosheets improved cell viability and cell division rate, suggesting the better feasibility to be applied as 3D culture scaffolds.
Yingzhen Zhang, Xiaoli Yang, Zhongzhong Li, Kailin Bu, Tong Li, Zhizhao Ma, Binbin Wang, Lina Ma, Honglin Lu, Kun Zhang, Luji Liu, Yanying Zhao, Yipu Zhu, Jin Qin, Junzhao Cui, Lin Liu, Shuxia Liu, Ping Fan, Xiaoyun Liu, Frontiers in Cell and Developmental Biology, 9, 2021
Objective: Multiple mechanisms including vascular endothelial cell damage have a critical role in the formation and development of atherosclerosis (AS), but the specific molecular mechanisms are not exactly clarified. This study aims to determine the possible roles of proline-rich tyrosine kinase 2 (Pyk2)/mitochondrial calcium uniporter (MCU) pathway in AS mouse model and H2O2-induced endothelial cell damage model and explore its possible mechanisms.Approach and Results: The AS mouse model was established using apolipoprotein E-knockout (ApoE–/–) mice that were fed with a high-fat diet. It was very interesting to find that Pyk2/MCU expression was significantly increased in the artery wall of atherosclerotic mice and human umbilical vein endothelial cells (HUVECs) attacked by hydrogen peroxide (H2O2). In addition, down-regulation of Pyk2 by short hairpin RNA (shRNA) protected HUVECs from H2O2 insult. Furthermore, treatment with rosuvastatin on AS mouse model and H2O2-induced HUVEC injury model showed a protective effect against AS by inhibiting the Pyk2/MCU pathway, which maintained calcium balance, prevented the mitochondrial damage and reactive oxygen species production, and eventually inhibited cell apoptosis.Conclusion: Our results provide important insight into the initiation of the Pyk2/MCU pathway involved in AS-related endothelial cell damage, which may be a new promising target for atherosclerosis intervention.
Liang-Ju Ning, Ya-Jing Zhang, Yan-Jing Zhang, Min Zhu, Wei Ding, Yan-Lin Jiang, Yi Zhang, Jing-Cong Luo, Ting-Wu Qin, Frontiers in Cell and Developmental Biology, 9, 2021
Decellularized tendon hydrogel from human or porcine tendon has been manufactured and found to be capable of augmenting tendon repair in vivo. However, no studies have clarified the effect of decellularized tendon hydrogel upon stem cell behavior. In the present study, we developed a new decellularized tendon hydrogel (T-gel) from Macaca mulatta, and investigated the effect of T-gel on the proliferation, migration and tenogenic differentiation of Macaca mulatta tendon-derived stem cells (mTDSCs). The mTDSCs were first identified to have universal stem cell characteristics, including clonogenicity, expression of mesenchymal stem cell and embryonic stem cell markers, and multilineage differentiation potential. Decellularization of Macaca mulatta Achilles tendons was confirmed to be effective by histological staining and DNA quantification. The resultant T-gel exhibited highly porous structure or similar nanofibrous structure and approximately swelling ratio compared to the collagen gel (C-gel). Interestingly, stromal cell-derived factor-1 (SDF-1) and fibromodulin (Fmod) inherent in the native tendon extracellular matrix (ECM) microenvironment were retained and the values of SDF-1 and Fmod in the T-gel were significantly higher than those found in the C-gel. Compared with the C-gel, the T-gel was found to be cytocompatible with NIH-3T3 fibroblasts and displayed good histocompatibility when implanted into rat subcutaneous tissue. More importantly, it was demonstrated that the T-gel supported the proliferation of mTDSCs and significantly promoted the migration and tenogenic differentiation of mTDSCs compared to the C-gel. These findings indicated that the T-gel, with its retained nanofibrous structure and some bioactive factors of native tendon ECM microenvironment, represents a promising hydrogel for tendon regeneration.
Chunyu Bai, Qiwei Ren, Haifeng Liu, Xiangchen Li, Weijun Guan, Yuhua Gao, Frontiers in Cell and Developmental Biology, 9, 2021
Pancreatic beta cell transplantation is the ideal method for treatment of type 1 diabetes mellitus (T1DM), and the generation of beta cells from induced pluripotent stem cells (iPSCs) of patients is a promising strategy. In this study, we improved a previous strategy to produce beta cells using extracellular vesicles (EVs) derived from mature beta cells and differentiated beta cells from iPSCs (i-Beta cells), which secreted insulin under glucose stimulation in vitro and ameliorated hyperglycemia in vivo. Mechanistic analyses revealed that EV-carried microRNA (miR)-212/132 (EV-miR-212/132) directly bound to the 3′ UTR of FBW7 to prevent its translation and FBW7 combined with NGN3 to accelerate its proteasomal degradation. EV-miR-212/132 stabilized NGN3 expression to promote differentiation of endocrine cells from induced iPSCs. Moreover, NGN3 bound to PDX1 to enhance transcription of endogenous miR-212/132 and formed a positive regulatory circuit that maintained the functions of mature pancreatic beta cells.ConclusionThis study describes a novel approach for beta cell production and supports the use of iPSCs for cell replacement therapy of T1DM.
Marlies P. Noz, Annemieke ter Telgte, Kim Wiegertjes, Anil M. Tuladhar, Charlotte Kaffa, Simone Kersten, Siroon Bekkering, Charlotte D. C. C. van der Heijden, Alexander Hoischen, Leo A. B. Joosten, Mihai G. Netea, Marco Duering, Frank-Erik de Leeuw, Niels P. Riksen, Frontiers in Cardiovascular Medicine, 8, 2021
Background: The etiology of cerebral small vessel disease (SVD) remains elusive, though evidence is accumulating that inflammation contributes to its pathophysiology. We recently showed retrospectively that pro-inflammatory monocytes are associated with the long-term progression of white matter hyperintensities (WMHs). In this prospective high-frequency imaging study, we hypothesize that the incidence of SVD progression coincides with a pro-inflammatory monocyte phenotype.Methods: Individuals with SVD underwent monthly magnetic resonance imaging (MRI) for 10 consecutive months to detect SVD progression, defined as acute diffusion-weighted imaging-positive (DWI+) lesions, incident microbleeds, incident lacunes, and WMH progression. Circulating inflammatory markers were measured, cytokine production capacity of monocytes was assessed after ex vivo stimulation, and RNA sequencing was performed on isolated monocytes in a subset of participants.Results: 13 out of 35 individuals developed SVD progression (70 ± 6 years, 54% men) based on incident lesions (n = 7) and/or upper quartile WMH progression (n = 9). Circulating E-selectin concentration (p < 0.05) and the cytokine production capacity of interleukin (IL)-1β and IL-6 (p < 0.01) were higher in individuals with SVD progression. Moreover, RNA sequencing revealed a pro-inflammatory monocyte signature including genes involved in myelination, blood–brain barrier, and endothelial–leukocyte interaction.Conclusions: Circulating monocytes of individuals with progressive SVD have an inflammatory phenotype, characterized by an increased cytokine production capacity and a pro-inflammatory transcriptional signature.
Ekaterina A. Kurbatova, Nelli K. Akhmatova, Anton E. Zaytsev, Elina A. Akhmatova, Nadezhda B. Egorova, Natalya E. Yastrebova, Elena V. Sukhova, Dmitriy V. Yashunsky, Yury E. Tsvetkov, Nikolay E. Nifantiev, Frontiers in Immunology, 11, 2020
A number of studies have demonstrated the limited efficacy ofS. pneumoniaetype 3 capsular polysaccharide (CP) in the 13-valent pneumococcal conjugate vaccine against serotype 3 invasive pneumococcal diseases and carriage. Synthetic oligosaccharides (OSs) may provide an alternative to CPs for development of novel conjugated pneumococcal vaccines and diagnostic test systems. A comparative immunological study of di–, tri–, and tetra–bovine serum albumin (BSA) conjugates was performed. All oligosaccharides conjugated with biotin and immobilized on streptavidin-coated plates stimulated production of IL-1α, IL-2, IL-4, IL-5, IL-10, IFNγ, IL-17A, and TNFα, but not IL-6 and GM-CSF in monocultured mice splenocytes. The tetrasaccharide–biotin conjugate stimulated the highest levels of IL-4, IL-5, IL-10, and IFNγ, which regulate expression of specific immunoglobulin isotypes. The tetra–BSA conjugate adjuvanted with aluminum hydroxide elicited high levels of IgM, IgG1, IgG2a, and IgG2b antibodies (Abs). Anti-CP-induced Abs could only be measured using the biotinylated tetrasaccharide. The tetrasaccharide ligand possessed the highest binding capacity for anti-OS and antibacterial IgG Abs in immune sera. Sera to the tetra–BSA conjugate promoted greater phagocytosis of bacteria by neutrophils and monocytes than the CRM197-CP-antisera. Sera of mice immunized with the tetra–BSA conjugate exhibited the highest titer of anti-CP IgG1 Abs compared with sera of mice inoculated with the same doses of di– and tri–BSA conjugates. Upon intraperitoneal challenge with lethal doses ofS. pneumoniaetype 3, the tri– and tetra–BSA conjugates protected mice more significantly than the di–BSA conjugate. Therefore, it may be concluded that the tetrasaccharide ligand is an optimal candidate for development of a semi-synthetic vaccine againstS. pneumoniaetype 3 and diagnostic test systems.
Gábor Papp, Krisztina Szabó, Ilona Jámbor, Marianna Mile, Alexandra Réka Berki, Attila Csaba Arany, Gabriella Makra, Peter Szodoray, Zoltán Csiki, László Balogh, Frontiers in Immunology, 12, 2021
Age-related changes of the immune system lead to an increased morbidity and mortality due to enhanced vulnerability to infectious diseases and malignancies. Recent studies revealed the important effects of physical activity on immune functions, which may largely depend on the type of exercise, its intensity and duration. However, limited information is available regarding the immunological effects of sport activities in older ages. The aim of our study was to examine the changes in a wide spectrum of lymphocyte subtypes after regular workout among healthy elderly individuals. We enrolled 29 elderly women with sedentary lifestyle (mean age: 67.03 ± 3.74 years) to take part in a 6-week long functional conditioning gymnastic exercise program. The percentages of peripheral natural killer (NK), NKT cells, T and B lymphocyte subtypes (early-/late-activated T, naïve and memory T, cytotoxic T (Tc), T-helper (Th)1, Th2, Th17, T regulatory type 1 (Tr1), CD4+CD127lo/-CD25bright Treg, as well as naïve and memory B cells) were determined by flow cytometry. Evaluation of the changes in functional capability of Treg cells was based on in vitro functional assays. At the end of exercise program, in parallel with improvements in body composition and physical performance, significant changes in naïve and memory lymphocyte ratios were observed. Importantly, levels of naïve Tc cells elevated, ratios of effector memory Tc cells decreased and distribution of memory B cells rearranged as well. Additionally, proportions of late-activated HLA-DR+ T cells increased, while percentages of anti-inflammatory interleukin (IL)-10 producing Tr1 cells, as well as immunosuppressive CD4+CD127lo/-CD25bright Treg cells decreased following the exercise workout. Changes observed after the regular exercise program indicate an improvement in the age-related redistribution of certain naïve and memory cell proportions and a retuned immune regulation in older ages.
Marion Griessl, Angelique Renzaho, Kirsten Freitag, Christof K. Seckert, Matthias J. Reddehase, Niels A. W. Lemmermann, Frontiers in Immunology, 12, 2021
Acute infection with murine cytomegalovirus (mCMV) is controlled by CD8+ T cells and develops into a state of latent infection, referred to as latency, which is defined by lifelong maintenance of viral genomes but absence of infectious virus in latently infected cell types. Latency is associated with an increase in numbers of viral epitope-specific CD8+ T cells over time, a phenomenon known as “memory inflation” (MI). The “inflationary” subset of CD8+ T cells has been phenotyped as KLRG1+CD62L- effector-memory T cells (iTEM). It is agreed upon that proliferation of iTEM requires repeated episodes of antigen presentation, which implies that antigen-encoding viral genes must be transcribed during latency. Evidence for this has been provided previously for the genes encoding the MI-driving antigenic peptides IE1-YPHFMPTNL and m164-AGPPRYSRI of mCMV in the H-2d haplotype. There exist two competing hypotheses for explaining MI-driving viral transcription. The “reactivation hypothesis” proposes frequent events of productive virus reactivation from latency. Reactivation involves a coordinated gene expression cascade from immediate-early (IE) to early (E) and late phase (L) transcripts, eventually leading to assembly and release of infectious virus. In contrast, the “stochastic transcription hypothesis” proposes that viral genes become transiently de-silenced in latent viral genomes in a stochastic fashion, not following the canonical IE-E-L temporal cascade of reactivation. The reactivation hypothesis, however, is incompatible with the finding that productive virus reactivation is exceedingly rare in immunocompetent mice and observed only under conditions of compromised immunity. In addition, the reactivation hypothesis fails to explain why immune evasion genes, which are regularly expressed during reactivation in the same cells in which epitope-encoding genes are expressed, do not prevent antigen presentation and thus MI. Here we show that IE, E, and L genes are transcribed during latency, though stochastically, not following the IE-E-L temporal cascade. Importantly, transcripts that encode MI-driving antigenic peptides rarely coincide with those that encode immune evasion proteins. As immune evasion can operate only in cis, that is, in a cell that simultaneously expresses antigenic peptides, the stochastic transcription hypothesis explains why immune evasion is not operative in latently infected cells and, therefore, does not interfere with MI.
Takashi MaruYama, Shuhei Kobayashi, Hiroko Nakatsukasa, Yuki Moritoki, Daiki Taguchi, Yoichi Sunagawa, Tatsuya Morimoto, Atsuko Asao, Wenwen Jin, Yuji Owada, Naoto Ishii, Yoshiharu Iwabuchi, Akihiko Yoshimura, WanJun Chen, Hiroyuki Shibata, Frontiers in Immunology, 12, 2021
Regulatory T cells (Tregs) play a crucial role in preventing antitumor immune responses in cancer tissues. Cancer tissues produce large amounts of transforming growth factor beta (TGF-β), which promotes the generation of Foxp3+ Tregs from naïve CD4+ T cells in the local tumor microenvironment. TGF-β activates nuclear factor kappa B (NF-κB)/p300 and SMAD signaling, which increases the number of acetylated histones at the Foxp3 locus and induces Foxp3 gene expression. TGF-β also helps stabilize Foxp3 expression. The curcumin analog and antitumor agent, GO-Y030, prevented the TGF-β-induced generation of Tregs by preventing p300 from accelerating NF-κB-induced Foxp3 expression. Moreover, the addition of GO-Y030 resulted in a significant reduction in the number of acetylated histones at the Foxp3 promoter and at the conserved noncoding sequence 1 regions that are generated in response to TGF-β. In vivo tumor models demonstrated that GO-Y030-treatment prevented tumor growth and reduced the Foxp3+ Tregs population in tumor-infiltrating lymphocytes. Therefore, GO-Y030 exerts a potent anticancer effect by controlling Treg generation and stability.
Xu Liu, Jiang-Tao Zhang, Yue Hu, Wen-Qi Shan, Zhi-Hong Wang, Qing-Yue Fu, Dan-Ni Fu, Jiang Ji, Tong Liu, Frontiers in Medicine, 8, 2021
Chronic itch is a common distressing symptom of many diseases, which reduced patient's quality of life. The mechanistic study on itch and screening for new anti-itch drugs require the development of new pre-clinical itch animal models. Herein, we established an acute itch model by intradermal (i.d.) injection of low-dose formalin into the neck or cheek in mice. In mice, i.d. injection of formalin (0.1–5%) in the nape of the neck evoked robust scratching behavior in a dose-dependent manner and the dose–response curves showed an inverted “U” shape. I.d. injection of formalin (0.3–0.6%) into the cheek evoked scratching in mice but wiping in rats, while formalin (1.25–5%) induced mixed wiping and scratching behavior in both mice and rats. Further, we found that 0.3% formalin-induced scratching was histamine-independent and significantly attenuated by transient receptor potential ion channel A1 (TRPA1) inhibitor (HC030031) or in TRPA1 knockout (KO) mice, but not affected by transient receptor potential ion channel V1 (TRPV1) inhibitor (capsazepine) or in TRPV1 KO mice. Additionally, 0.3% formalin-induced up-regulation of phosphorylation of extracellular regulated protein kinases (p-ERK) in the dorsal root ganglion (DRG) and scratching were suppressed by intrathecal injection of MEK inhibitor U0126 in mice. Incubation of 0.03% formalin induced the accumulation of intracellular reactive oxygen species (ROS) in the cultured DRG-derived cell line ND7-23, and formalin-induced itch was suppressed by antioxidants in mice. Finally, perfusion of 0.03% formalin induced elevation of intracellular calcium in a subset of primary cultured DRG neurons of mice. Thus, these results indicate that low-dose formalin induced non-histaminergic itch by activation of TRPA1 in mice, which may be employed as a useful acute itch model for screening potential anti-itch drugs.
Tianyun Qiao, Yanlu Xiong, Yangbo Feng, Wenwen Guo, Yongsheng Zhou, Jinbo Zhao, Tao Jiang, Changhong Shi, Yong Han, Frontiers in Oncology, 11, 2021
Immunotherapy is a curable treatment for certain cancers, but it is still only effective in a small subset of patients, partly because of the lack of sufficient immune cells in the tumor. It is reported that targeted lactate dehydrogenase (LDH) to reduce lactic acid production can promote the infiltration and activity of immune cells and turn tumors into hot tumors. Therefore, we constructed a humanized mouse model to evaluate the efficacy of using classical LDH inhibitor oxamate and pembrolizumab alone or in combination in non-small cell lung cancer (NSCLC). We found that both oxamate and pembrolizumab monotherapy significantly delayed tumor growth; moreover, combination therapy showed better results. Immunofluorescence analysis showed that oxamate treatment increased the infiltration of activated CD8+ T cells in the tumor, which might have enhanced the therapeutic effects of pembrolizumab. Treatment of the humanized mice with anti-CD8 abrogated the therapeutic effects of oxamate, indicating CD8+ T cells as the main force mediating the effect of oxamate. In conclusion, Our preclinical findings position that oxamate not only inhibits tumor growth at a high safe dose but also enhances the efficacy of pembrolizumab in Hu-PBMC-CDX mice. Our study also provides a preclinical model for exploring the efficacy of other immune-based combination therapies for NSCLC.
Chung-Hsien Shih, Li-Ling Chuang, Mong-Hsun Tsai, Li-Han Chen, Eric Y. Chuang, Tzu-Pin Lu, Liang-Chuan Lai, Frontiers in Oncology, 11, 2021
Hypoxia, a common process during tumor growth, can lead to tumor aggressiveness and is tightly associated with poor prognosis. Long noncoding RNAs (lncRNAs) are long ribonucleotides (>200 bases) with limited ability to translate proteins, and are known to affect many aspects of cellular function. One of their regulatory mechanisms is to function as a sponge for microRNA (miRNA) to modulate its biological functions. Previously, MALAT1 was identified as a hypoxia-induced lncRNA. However, the regulatory mechanism and functions of MALAT1 in breast cancer are still unclear. Therefore, we explored whether MALAT1 can regulate the functions of breast cancer cells through miRNAs. Our results showed the expression levels of MALAT1 were significantly up-regulated under hypoxia and regulated by HIF-1α and HIF-2α. Next, in contrast to previous reports, nuclear and cytoplasmic fractionation assays and fluorescence in situ hybridization indicated that MALAT1 was mainly located in the cytoplasm. Therefore, the labeling of MALAT1 as a nuclear marker should be done with the caveat. Furthermore, expression levels of miRNAs and RNA immunoprecipitation using antibody against AGO2 showed that MALAT1 functioned as a sponge of miRNA miR-3064-5p. Lastly, functional assays revealed that MALAT1 could promote cellular migration and proliferation of breast cancer cells. Our findings provide evidence that hypoxia-responsive long non-coding MALAT1 could be transcriptionally activated by HIF-1α and HIF-2α, act as a miRNA sponge of miR-3064-5p, and promote tumor growth and migration in breast cancer cells. These data suggest that MALAT1 may be a candidate for therapeutic targeting of breast cancer progression.
Chien-Chou Hsiao, Cheng-Han Lee, Rei-Cheng Yang, Jia-Yuh Chen, Tzu-Cheng Su, Yu-Jun Chang, Ching-Yuang Lin, Yi-Giien Tsai, Frontiers in Pediatrics, 9, 2021
Background: Heat shock protein-70 (Hsp-70) exhibits cytoprotective effects against oxidative stress-induced airway injury. This study aimed to examine Hsp-70 and 8-hydroxy-2′-deoxyguanosine (8-OHdG) from tracheal aspirates (TA) in very low-birth weight (VLBW) preterm infants to predict the development of bronchopulmonary dysplasia (BPD).Methods: This birth cohort study enrolled 109 VLBW preterm infants, including 32 infants who developed BPD. Hsp-70 and 8-OHdG concentrations from TA were measured by immunoassay. The apoptosis of TA epithelial cells obtained on Day 28 after birth was measured using annexin-V staining assay.Results: Hsp-70 and 8-OHdG levels in TA fluid were persistently increased from Day 1 to Day 28 of life in the BPD group. Multiple linear regression analysis demonstrated that BPD was significantly associated with gestational age, respiratory distress syndrome, and TA Hsp-70 and 8-OHdG levels on post-natal Day 28. The TA Hsp-70 level positively correlated with TA 8-OHdG level on the Day 1 (r = 0.47) and Day 28 of life (r = 0.68). Incubation of recombinant Hsp-70 with primary epithelial cells derived from TA of patients decreased hydrogen peroxide-induced epithelial cell death.Conclusions: Hsp-70 levels are associated with a state of oxidative injury in the development of BPD.
Xixi Lin, Yongliang Jia, Xinwei Dong, Jian Shen, Yachao Jin, Yanyou Li, Fang Wang, Eitan Anenberg, Jiancang Zhou, Jianping Zhu, Xiaoping Chen, Qiangmin Xie, Yicheng Xie, Frontiers in Pharmacology, 10, 2019
Background: Platinum-based drugs prevail as the main treatment of lung cancer; this is caused by their relative effectiveness despite known side effects, such as neurotoxicity. The risk reward of the treatment and side effects is confronted when dosage is considered and when resistance to treatment develops. Development of new compounds that improve effectiveness and safety profiles addresses this ongoing need in clinical practice.Objectives: The novel water-soluble platinum complex, diplatin, was synthesized, and its antitumor potency and toxicology profile were evaluated in murine xenograft tumor models and in lung cancer cell lines.Methods: The effects of diplatin, cisplatin (DDP), and carboplatin (CBP) on the viability of nine lung tumor cell lines and one normal human lung epithelial cell line were evaluated using the MTT assay. Therapeutic index was calculated as LD50/ED50 to identify and compare the ideal therapeutic windows of the above compounds. Diplatin’s antitumor effects were assessed in lung xenograft tumors of nude mice; molecular mechanisms of therapeutic effects were identified.Results: Diplatin had desirable IC50 compared to CBP in a variety of cultured tumor cells, notably lung tumor cells. In the mouse xenograft lung tumor, diplatin led to a substantially improved therapeutic index when compared to the effects of DDP and CBP. Importantly, diplatin inhibited the growth of DDP-resistant lung tumor cells. Diplatin’s mode of action was characterized to be through cell cycle arrest in the G2/M phase and induction of lung tumor apoptosis via ROS/JNK/p53-mediated pathways.Conclusion: Diplatin was observed to have antitumor effects in mice with both greater potency and safety compared with DDP and CBP. These observations indicate that diplatin is promising as a potential treatment in future clinical applications.
Only abstracts that are published under https://creativecommons.org/licenses/by/4.0/ are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Beckman Coulter Cytomics in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.
Disclaimer: The data on this site is intended for educational purposes only. QuestPair assumes no responsibility or liability for any errors or omissions in the content of this site. The information contained in this site is provided and presented on an “as is“ basis with no guarantees of completeness, accuracy, usefulness or timeliness.

Customer Service

Here to help you with: Product Inquiries, Shipping & Support, Technical Support, Business Inquiries and Press.

We are available to assist you Mon-Fri, 10am - 5pm CET.

+31 (0) 73 7114717
[email protected]