Applied Biosystems 2000 - at
Applied Biosystems 2000
Selling the Applied Biosystems 2000?
Sign Up
Can‘t find Applied Biosystems 2000 offers?
Post a request
triple quadrupole mass spectrometer, triple quadrupole mass spectrometer
This model was found at
79 locations
The model is used in
18 countries
Usage per year (up to 2020)
Loading histogram...
69 related research fields
Loading pie chart...

About the Applied Biosystems 2000

The model Applied Biosystems 2000 was found in 79 unique locations in 18 countries where it was mentioned from 2007 until recentlyIt is used by scientists in various research fields such as Molecular Medicine, Pharmaceutical Science, Drug Discovery, Biochemistry, and Pharmacology. The model is also used in General Medicine, General Chemistry, Organic Chemistry, Physical and Theoretical Chemistry, Analytical Chemistry, Chemistry, Molecular Biology, Pharmacology (medical), Toxicology, Plant Science, Microbiology, Cell Biology, General Veterinary, Environmental Chemistry, Cellular and Molecular Neuroscience, Genetics, Oncology, Immunology, Cancer Research, Aquatic Science, Catalysis, Immunology and Allergy, Microbiology (medical), Genetics (clinical), and Ecology, Evolution, Behavior and Systematics.
Loading map...

Research that uses the Applied Biosystems 2000

Naoya Sasazaki, Seiich Uno, Emiko Kokushi, Katsuki Toda, Hiroshi Hasunuma, Daisaku Matsumoto, Ayaka Miyashita, Osamu Yamato, Hiroaki Okawa, Masayuki Ohtani, Johanna Fink-Gremmels, Masayasu Taniguchi, Mitsuhiro Takagi, Archives Animal Breeding, 64, 257-264 (1), 2021
Abstract. We evaluated the effects of supplementing cattle feed with difructose anhydride III (DFA III) by measuring urinary sterigmatocystin (STC) concentrations using 20 Japanese Black cattle aged 9–10 months from one herd. DFA III was supplemented for 2 weeks for 10 animals, and non-treated animals served as controls. The natural STC concentration in the dietary feed was 0.06 mg kg−1 (mixture of roughage and concentrate) at the beginning of the study (Day 0). The urine STC concentration was measured using liquid chromatography with tandem mass spectrometry 1 d prior to DFA III administration, 9 and 14 d thereafter, and 9 d following supplementation cessation, concomitant with the measurement of serum amyloid A (SAA). The number of heifers in which STC was detected in the urine was low (10 %) in the DFA III group compared to that (60 %) in the control group on Day 9. After 9 d following supplementation cessation (Day 23), STC concentrations were significantly lower (P=0.032) in the DFA III group than in the control group, although there was no difference in the number of heifers in which urinary STC was detected or in SAA concentrations between the two groups. Our findings demonstrate the effect of DFA III on reducing the urinary concentration of STC in Japanese Black cattle.
Sophia J. Lang, Michael Schmiech, Susanne Hafner, Christian Paetz, Katharina Werner, Menna El Gaafary, Christoph Q. Schmidt, Tatiana Syrovets, Thomas Simmet, International Journal of Molecular Sciences, 21, 4090 (11), 2020
Triple negative human breast cancer (TNBC) is an aggressive cancer subtype with poor prognosis. Besides the better-known artemisinin, Artemisia annua L. contains numerous active compounds not well-studied yet. High-performance liquid chromatography coupled with diode-array and mass spectrometric detection (HPLC-DAD-MS) was used for the analysis of the most abundant compounds of an Artemisia annua extract exhibiting toxicity to MDA-MB-231 TNBC cells. Artemisinin, 6,7-dimethoxycoumarin, arteannuic acid were not toxic to any of the cancer cell lines tested. The flavonols chrysosplenol d and casticin selectively inhibited the viability of the TNBC cell lines, MDA-MB-231, CAL-51, CAL-148, as well as MCF7, A549, MIA PaCa-2, and PC-3. PC-3 prostate cancer cells exhibiting high basal protein kinase B (AKT) and no ERK1/2 activation were relatively resistant, whereas MDA-MB-231 cells with high basal ERK1/2 and low AKT activity were more sensitive to chrysosplenol d treatment. In vivo, chrysosplenol d and casticin inhibited MDA-MB-231 tumor growth on chick chorioallantoic membranes. Both compounds induced mitochondrial membrane potential loss and apoptosis. Chrysosplenol d activated ERK1/2, but not other kinases tested, increased cytosolic reactive oxygen species (ROS) and induced autophagy in MDA-MB-231 cells. Lysosomal aberrations and toxicity could be antagonized by ERK1/2 inhibition. The Artemisia annua flavonols chrysosplenol d and casticin merit exploration as potential anticancer therapeutics.
Maja Molnar, Harshad Brahmbhatt, Vesna Rastija, Valentina Pavić, Mario Komar, Maja Karnaš, Jurislav Babić, Molecules, 23, 1897 (8), 2018
A series of rhodanine derivatives was synthesized in the Knoevenagel condensation of rhodanine and different aldehydes using choline chloride:urea (1:2) deep eutectic solvent. This environmentally friendly and catalyst free approach was very effective in the condensation of rhodanine with commercially available aldehydes, as well as the ones synthesized in our laboratory. All rhodanine derivatives were subjected to 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity investigation and quantitative structure-activity relationship (QSAR) studies were performed to elucidate their structure-activity relationship. The best multiple linear QSAR model demonstrate a stability in the internal validation and Y-randomization (R2 = 0.81; F = 24.225; Q2loo = 0.72; R2Yscr = 0.148). Sphericity of the molecule, ratio of symmetric atoms enhanced atomic mass along the principle axes in regard to total number of atoms in molecule, and 3D distribution of the atoms higher electronegativity (O, N, and S) in molecules are important characteristic for antioxidant ability of rhodanine derivatives. Molecular docking studies were carried out in order to explain in silico antioxidant studies, a specific protein tyrosine kinase (2HCK). The binding interactions of the most active compound have shown strong hydrogen bonding and van der Waals interactions with the target protein.
Peta Harvey, Nyoman Kurniawan, Rocio Finol-Urdaneta, Jeffrey McArthur, Dorien Van Lysebetten, Thomas Dash, Justine Hill, David Adams, Thomas Durek, David Craik, Molecules, 23, 2715 (10), 2018
μ-Conotoxins are potent and highly specific peptide blockers of voltage-gated sodium channels. In this study, the solution structure of μ-conotoxin GIIIC was determined using 2D NMR spectroscopy and simulated annealing calculations. Despite high sequence similarity, GIIIC adopts a three-dimensional structure that differs from the previously observed conformation of μ-conotoxins GIIIA and GIIIB due to the presence of a bulky, non-polar leucine residue at position 18. The side chain of L18 is oriented towards the core of the molecule and consequently the N-terminus is re-modeled and located closer to L18. The functional characterization of GIIIC defines it as a canonical μ-conotoxin that displays substantial selectivity towards skeletal muscle sodium channels (NaV), albeit with ~2.5-fold lower potency than GIIIA. GIIIC exhibited a lower potency of inhibition of NaV1.4 channels, but the same NaV selectivity profile when compared to GIIIA. These observations suggest that single amino acid differences that significantly affect the structure of the peptide do in fact alter its functional properties. Our work highlights the importance of structural factors, beyond the disulfide pattern and electrostatic interactions, in the understanding of the functional properties of bioactive peptides. The latter thus needs to be considered when designing analogues for further applications.
Xuchao Jia, Dan Yang, Yue Yang, Haihui Xie, Molecules, 24, 256 (2), 2019
The fruit of Averrhoa carambola L. (Oxalidaceae), commonly known as star fruit or carambola, is popular in tropical and subtropical regions. Carotenoid-derived components, mainly C13- and C15-norisoprenoids, contribute greatly to the flavor of star fruit. Previously reported norisoprenoids were tentatively identified by GC-MS analysis after enzymatic hydrolysis. To gain accurate information about glycosidically bound flavor precursors in star fruit, a phytochemical study was conducted, which led to the isolation of 16 carotenoid derivatives—One new C13-norisoprenoid glucoside, (5R,6S,7E,9R)-5,6,9-trihydroxy-7-megastigmene 9-O-β-d-glucoside (1); one new C15-norisoprenoid, (6S,7E,10S)-Δ9,15-10-hydroxyabscisic alcohol (11); and 14 known ones, of which 12 were in glucoside form. The structures of the two new compounds were elucidated on the basis of extensive spectroscopic data analysis and chemical reaction. Compound 11 was a rare C15-norisoprenoid with a double bond between C-9 and C-15, and its possible biogenetic pathway was proposed. The known compounds were identified by comparison of their mass and nuclear magnetic resonance (NMR) data with those reported in the literature. The structure identification of one new (1) and seven known (3–7, 9, and 10) C13-norisoprenoid glucosides from the genus Averrhoa for the first time enriches the knowledge of carotenoid-derived flavor precursors in star fruit.
Daniel Marx, Gregor Schnakenburg, Stefan Grimme, Christa E. Müller, Molecules, 24, 2168 (11), 2019
8-Arylethynylxanthine derivatives are potent, selective adenosine A2A receptor antagonists, which represent (potential) therapeutics for Parkinson’s disease, Alzheimer’s dementia, and the immunotherapy of cancer. 6-Amino-5-amidouracil derivatives are important precursors for the synthesis of such xanthines. We noticed an unexpected duplication of NMR signals in many of these uracil derivatives. Here, we present a detailed analytical study of structurally diverse 6-amino-5-carboxamidouracils employing dynamic and two-dimensional NMR spectroscopy, density functional theory calculations, and X-ray analysis to explain the unexpected properties of these valuable drug intermediates.
Nikola Sakač, Dean Marković, Bojan Šarkanj, Dubravka Madunić-Čačić, Krunoslav Hajdek, Božo Smoljan, Marija Jozanović, Molecules, 26, 1366 (5), 2021
A novel, simple, low-cost, and user-friendly potentiometric surfactant sensor based on the new 1,3-dihexadecyl−1H-benzo[d]imidazol−3-ium-tetraphenylborate (DHBI–TPB) ion-pair for the detection of cationic surfactants in personal care products and disinfectants is presented here. The new cationic surfactant DHBI-Br was successfully synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectrometry, liquid chromatography–mass spectrometry (LC–MS) and elemental analysis and was further employed for DHBI–TPB ion-pair preparation. The sensor gave excellent response characteristics for CTAB, CPC and Hyamine with a Nernstian slope (57.1 to 59.1 mV/decade) whereas the lowest limit of detection (LOD) value was measured for CTAB (0.3 × 10−6 M). The sensor exhibited a fast dynamic response to dodecyl sulfate (DDS) and TPB. High sensor performances stayed intact regardless of the employment of inorganic and organic cations and in a broad pH range (2−11). Titration of cationic and etoxylated (EO)-nonionic surfactant (NSs) (in Ba2+) mixtures with TPB revealed the first inflexion point for a cationic surfactant and the second for an EO-nonionic surfactant. The increased concentration of EO-nonionic surfactants and the number of EO groups had a negative influence on titration curves and signal change. The sensor was successfully applied for the quantification of technical-grade cationic surfactants and in 12 personal care products and disinfectants. The results showed good agreement with the measurements obtained by a commercial surfactant sensor and by a two-phase titration. A good recovery for the standard addition method (98–102%) was observed.
Jeong-Soo Kim, Min-Soo Kim, In-hwan Baek, Pharmaceutics, 10, 187 (4), 2018
Tadalafil is an oral selective phosphodiesterase type-5 inhibitor with demonstrated efficacy and safety that is used to treat erectile dysfunction. The purpose of this study is to compare the pharmacokinetic properties of tadalafil after conventional oral tablet administration and novel intranasal administration in beagle dogs. Fourteen 13-month-old male beagle dogs were randomly divided into two groups, and were given 5 mg tadalafil orally or intranasally in a parallel design. Blood samples were collected before and 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, and 36 h after administration. The plasma concentration of tadalafil was determined via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The systemic exposure and absorption rate of tadalafil were significantly greater in the intranasal administration group than in the oral administration group. A one-compartment model with first-order absorption and elimination was sufficient to explain the pharmacokinetic characteristics observed after both oral and intranasal administration. This study indicates that the development of tadalafil nasal delivery systems is feasible and may lead to better results than the conventional oral route.
Aleksandra Kiecak, Friederike Breuer, Christine Stumpp, Water, 12, 14 (1), 2019
The presence of pharmaceuticals in the environment, and in groundwater, has been recognized as a great environmental concern. Biodegradation and sorption are the main processes leading to the removal of contamination from the water phase. The aim of this study was to determine the transport processes of selected pharmaceuticals (antipyrine, atenolol, carbamazepine, caffeine, diclofenac, ketoprofen, sulfamethoxazole) in selected sediments (coarse sand, medium sand, sandy loam) in laboratory experiments. Moreover, the impact of flow velocities on the sorption and degradation rates of the selected compounds was studied. Column experiments were performed at three flow velocities, under abiotic and biotic conditions, applying conservative (bromide) and reactive tracers (pharmaceuticals). From the breakthrough curves, retardation factors and degradation rates were determined and the influence of variable flow conditions on transport parameters was evaluated. Low observed concentrations and recoveries of atenolol indicated a strong influence of sorption on its transport. Diclofenac, caffeine, and carbamazepine were also affected by sorption but to a lesser extent. Sulfamethoxazole, ketoprofen, and antipyrine were recovered nearly completely, indicating an almost conservative transport behavior. Biodegradation was small for all the compounds, as the results from biotic and abiotic column experiments were similar. Transport of the tested pharmaceuticals was not influenced by different flow velocities, as similar modelled degradation rates and retardation factors were found for all tested flow velocities.
Saira Afzal, Mariya al-Rashida, Abdul Hameed, Julie Pelletier, Jean Sévigny, Jamshed Iqbal, Frontiers in Pharmacology, 11, 2020
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are ectoenzymes that play an important role in the hydrolysis of nucleoside triphosphate and diphosphate to nucleoside monophosphate. NTPDase1, -2, -3 and -8 are the membrane bound members of this enzyme family that are responsible for regulating the levels of nucleotides in extracellular environment. However, the pathophysiological functions of these enzymes are not fully understood due to lack of potent and selective NTPDase inhibitors. Herein, a series of oxoindolin hydrazine carbothioamide derivatives is synthesized and screened for NTPDase inhibitory activity. Four compounds were identified as selective inhibitors of h-NTPDase1 having IC50 values in lower micromolar range, these include compounds 8b (IC50 = 0.29 ± 0.02 µM), 8e (IC50 = 0.15 ± 0.009 µM), 8f (IC50 = 0.24 ± 0.01 µM) and 8l (IC50 = 0.30 ± 0.03 µM). Similarly, compound 8k (IC50 = 0.16 ± 0.01 µM) was found to be a selective h-NTPDase2 inhibitor. In case of h-NTPDase3, most potent inhibitors were compounds 8c (IC50 = 0.19 ± 0.02 µM) and 8m (IC50 = 0.38 ± 0.03 µM). Since NTPDase3 has been reported to be associated with the regulation of insulin secretion, we evaluated our synthesized NTPDase3 inhibitors for their ability to stimulate insulin secretion in isolated mice islets. Promising results were obtained showing that compound 8m potently stimulated insulin secretion without affecting the NTPDase3 gene expression. Molecular docking studies of the most potent compounds were also carried out to rationalize binding site interactions. Hence, these compounds are useful tools to study the role of NTPDase3 in insulin secretion.
Only abstracts that are published under are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Applied Biosystems 2000 in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.