Agilent HP 6890 - at
Agilent HP 6890
Selling the Agilent HP 6890?
Sign Up
Can‘t find Agilent HP 6890 offers?
Post a request
system, gas chromatography system, gas chromatograph, system, gas chromatograph, gas chromatograph, instrument, gas chromatograph, gas chromatograph, series gas chromatograph, gas chromatograph
This model was found at
3520 locations
The model is used in
81 countries
Usage per year (up to 2020)
Loading histogram...
204 related research fields
Loading pie chart...

About the Agilent HP 6890

The model Agilent HP 6890 was found in 3520 unique locations in 81 countries where it was mentioned from 2004 until recentlyIt is used by scientists in various research fields such as General Medicine, Food Science, Analytical Chemistry, Organic Chemistry, and General Chemistry. The model is also used in Physical and Theoretical Chemistry, Pharmaceutical Science, Drug Discovery, Biochemistry, Microbiology, Molecular Medicine, Plant Science, Chemistry, Environmental Chemistry, Molecular Biology, Biotechnology, Genetics, Animal Science and Zoology, Ecology, Evolution, Behavior and Systematics, Pollution, Health, Toxicology and Mutagenesis, General Biochemistry, Genetics and Molecular Biology, Applied Microbiology and Biotechnology, Environmental Engineering, Microbiology (medical), Catalysis, Public Health, Environmental and Occupational Health, General Chemical Engineering, Toxicology, and Renewable Energy, Sustainability and the Environment.
Loading map...

Research that uses the Agilent HP 6890

Milan Margetín, Marta Oravcová, Jana Margetínová, Róbert Kubinec, Archives Animal Breeding, 61, 395-403 (4), 2018
Abstract. The fatty acid (FA) composition in the intramuscular fat (IMF) of the musculus longissimus dorsi (MLD) of Ile de France purebred lambs in two different production systems in Slovakia was evaluated using gas chromatography. In the first production system, lambs and ewes were assigned to pasture without access to concentrates (P). In the second system, lambs and ewes were confined indoors with hay/silage and access to concentrates (S). An analysis of variance with the following factors was employed: production system, sex, and production system–sex interactions. The proportions of arachidonic, eicosapentaeonic, docosapentaeonic, and docosahexaenoic FAs, i.e. long-chain polyunsaturated FA (PUFA), were significantly higher in P lambs (1.83, 0.82, 0.92, 0.29 g 100 g−1 FAME, respectively) than in S lambs (0.45, 0.14, 0.30, 0.09 g 100 g−1 FAME, respectively). The proportions of conjugated linoleic acid (CLA), n-6 PUFA, n-3 PUFA, and essential FA (linoleic and α-linolenic) were also significantly higher in P lambs (2.10, 8.50, 4.55, and 8.80 g 100 g−1 FAME, respectively) than in S lambs (0.65, 3.27, 1.50, and 3.64 g 100 g−1 FAME, respectively). The proportions of palmitic acid and myristic acid as important individual saturated FAs (SFA) were significantly higher in S lambs (28.51 and 8.30 g 100 g−1 FAME, respectively) than in P lambs (21.80 and 5.63 g 100 g−1 FAME, respectively). The proportion of all SFAs was also significantly higher in S lambs (57.87 g 100 g−1 FAME) than in P lambs (48.70 g 100 g−1 FAME). From a nutrition and human health point of view (i.e. higher proportions of PUFA, CLA, and essential FAs and lower proportions of SFAs), meat from P lambs was found to be more favourable and would be more highly recommended for consumption.
Witold Rant, Aurelia Radzik-Rant, Marcin Świątek, Roman Niżnikowski, Żaneta Szymańska, Magdalena Bednarczyk, Emil Orłowski, Anna Morales-Villavicencio, Magdalena Ślęzak, Archives Animal Breeding, 62, 383-391 (2), 2019
Abstract. The research carried out on meat from 45 ram lambs of the Polish merino breed allowed to determine the effect of meat aging and muscle type on physicochemical characteristics and oxidative stability of lipids. Analysis of physicochemical traits (pH, meat color, expressed juice, cooking loss, shear force, moisture, protein, fat and total collagen content) was performed on fresh and meat aged for 14 d in the longissimus lumborum (LL) and gluteus medius (GM) muscles. The meat aging determined all physicochemical characteristics except protein and fat content. More changes in pH and meat color parameters were defined in the GM muscle compared to the LL muscle. The increase in the tenderness of meat expressed as a reduction (P < 0.05) of shear force values was observed in both muscles aged for 14 d. A lower value (P < 0.05) of the shear force, despite the higher content of collagen, was determined in the GM muscle compared to LL. The investigated muscles differed in the degree of lipid peroxidation expressed as thiobarbituric acid-reactive substances (TBARS) in both fresh and aged meat. The TBARS value was lower (P < 0.05) in the LL muscle than in GM. In the longissimus lumborum muscle, the significantly lower content of polyunsaturated fatty acids (PUFAs) and PUFA n-6 has been recorded. The oxidation stability was not influenced by the meat aging.
Kamal Belhaj, Farid Mansouri, Abdessamad Benmoumen, Marianne Sindic, Marie-Laure Fauconnier, Mohamed Boukharta, C. Hana Serghini, Ahmed Elamrani, Archives Animal Breeding, 63, 471-482 (2), 2020
Abstract. The lipid analysis of commercial lamb's meat, from two main Moroccan production areas Middle Atlas and highlands of eastern Morocco, was conducted. This study concerns the lipid quality of sheep meat from Beni Guil (BG) and Timahdite (Ti) as indigenous breeds and that of the Ouled Djellal (ODj) breed of Algerian origin. To study the effect of the geographical area, the meat samples from the Beni Guil breed were taken in the two main locations of this breed: in the region of Ain Beni Mathar (BGA) and that of Tendrara (BGT). The fatty acid profiles of the sheep meats analyzed showed the following: (i) polyunsaturated fatty acid (PUFA) richness was of 12.87 % and 20.59 % respectively for BGA and BGT breeds; (ii) polyunsaturated ∕ saturated fatty acid ratios were ranged between 0.28 to 0.50 respectively for BGA and Ti breed; and (iii) PUFA-n−3 content was 1.71 % for ODj breed and 2.13 % for BGA. Thus, the PUFA-n−6 ∕ PUFA n−3 ratios range between 4.92 and 9.6 for BGA and Ti sheep meat, respectively. The cholesterol content was 0.08 % and 0.12 % of fresh meat respectively for ODj and BGA. Finally, meats of BGA and ODj have similar thrombogenicity (1.23 and 1.27 respectively) and atherogenicity indices (0.71 and 0.68 respectively). Statistically, these values were significantly higher than those registered for Ti breed (IT: 1.04 and AI: 0.51). In conclusion, from a nutritional point of view, it can be deduced that these meats have an interesting lipid quality due to their richness in desirable fatty acid (UFA + C18 : 0).
Xi Chen, Mingjie Xie, Michael D. Hays, Eric Edgerton, Donna Schwede, John T. Walker, Atmospheric Chemistry and Physics, 18, 6829-6846 (9), 2018
Abstract. This study investigates the composition of organic particulate matter in PM2.5 in a remote montane forest in the southeastern US, focusing on the role of organic nitrogen (N) in sulfur-containing secondary organic aerosol (nitrooxy-organosulfates) and aerosols associated with biomass burning (nitro-aromatics). Bulk water-soluble organic N (WSON) represented  ∼  14 % w∕w of water-soluble total N (WSTN) in PM2.5 on average across seasonal measurement campaigns conducted in the spring, summer, and fall of 2015. The largest contributions of WSON to WSTN were observed in spring ( ∼  18 % w∕w) and the lowest in the fall ( ∼  10 % w∕w). On average, identified nitro-aromatic and nitrooxy-organosulfate compounds accounted for a small fraction of WSON, ranging from  ∼  1 % in spring to  ∼  4 % in fall, though were observed to contribute as much as 28 % w∕w of WSON in individual samples that were impacted by local biomass burning. The highest concentrations of oxidized organic N species occurred during summer (average of 0.65 ng N m−3) along with a greater relative abundance of higher-generation oxygenated terpenoic acids, indicating an association with more aged aerosol. The highest concentrations of nitro-aromatics (e.g., nitrocatechol and methyl-nitrocatechol), levoglucosan, and aged SOA tracers were observed during fall, associated with aged biomass burning plumes. Nighttime nitrate radical chemistry is the most likely formation pathway for nitrooxy-organosulfates observed at this low NOx site (generally < 1 ppb). Isoprene-derived organosulfate (MW216, 2-methyltetrol derived), which is formed from isoprene epoxydiols (IEPOX) under low NOx conditions, was the most abundant individual organosulfate. Concentration-weighted average WSON ∕ WSOC ratios for nitro-aromatics + organosulfates + terpenoic acids were 1 order of magnitude lower than the overall aerosol WSON ∕ WSOC ratio, indicating the presence of other uncharacterized higher-N-content species. Although nitrooxy-organosulfates and nitro-aromatics contributed a small fraction of WSON, our results provide new insight into the atmospheric formation processes and sources of these largely uncharacterized components of atmospheric organic N, which also helps to advance the atmospheric models to better understand the chemistry and deposition of reactive N.
Yonggang Xue, Yu Huang, Steven Sai Hang Ho, Long Chen, Liqin Wang, Shuncheng Lee, Junji Cao, Atmospheric Chemistry and Physics, 20, 5425-5436 (9), 2020
Abstract. The high contribution of secondary organic aerosol to the loading of fine particle pollution in China highlights the roles of volatile organic compound (VOC) oxidation. In this respect, particulate active metallic oxides in dust, like TiO2 and Fe ions, were proposed to influence the photochemical reactions of ambient VOCs. A case study was conducted at an urban site in Xi'an, northwest China, to investigate the origin and transformation of VOCs during a windblown dust-to-haze pollution episode, and the assumption that dust would enhance the oxidation of VOCs was verified. Local vehicle exhaust (25 %) and biomass burning (18 %) were found to be the two largest contributors to ambient VOCs. In the dust pollution period, a sharp decrease in the loading of VOCs and the aging of their components were observed. Simultaneously, the secondary oxygenated VOC fraction (i.e., methylglyoxal) increased. Source strength, physical dispersion, and regional transport were eliminated as major factors for the variation of ambient VOCs. In another aspect, about a 2- to 3-fold increase in the loading of iron (Fe) and titanium (Ti) was found in the airborne particles, together with a fast decrease in trans-/cis-2-butene ratios, which demonstrated that dust can accelerate the oxidation of ambient VOCs and the formation of secondary organic aerosol (SOA) precursors.
Yonggang Xue, Yu Huang, Steven Sai Hang Ho, Long Chen, Liqin Wang, Shuncheng Lee, Junji Cao, 2019
Abstract. High contribution of secondary organic aerosol to the loading of fine particle pollution in China highlights the roles of volatile organic compounds oxidation. Therein, particulate active metallic oxides in dust, like TiO2 and Fe ions, were proposed to influence the photochemical reactions of ambient VOCs. A case study was conducted at an urban site within Xi'an, northwestern China, to investigate the origin and transformation of VOCs during a windblown dust-to-haze pollution episode, and the assumption that dust would enhance the oxidation of VOCs was verified. Local vehicle exhaust (24.76 %) and biomass burning (18.37 %) were found to be the two largest contributors to ambient VOCs. In the dust pollution period, sharp decrease of VOCs loading and aging of their components were observed. Simultaneously, the secondary oxygenated VOCs fraction (i.e., methylglyoxal) increased. Source strength, physical dispersion, and regional transport were eliminated from the major factor for the variation of ambient VOCs. In another aspect, about 2 and 3 times increase of the loading of Iron (Fe) and titanium (Ti) was found in the airborne particle, together with fast decrease of trans-/cis-2-butene ratios which demonstrated that dust can accelerate the oxidation of ambient VOCs and formation of SOA precursors.
Shuo Liu, Shuangxi Fang, Peng Liu, Miao Liang, Minrui Guo, Zhaozhong Feng, 2020
Abstract. A 24-year long-term observation of atmospheric CH4 was presented at Mt. Waliguan (WLG) station, the only WMO/GAW global station in inland of Eurasia. Overall, during 1994–2017, continuously increase of atmospheric CH4 was observed at WLG with yearly growth rate of 5.1 ± 0.1 ppb yr−1, although near-zero and even negative growth appeared in some particular periods, e.g., 1999–2000, and 2004–2006. The average CH4 mole fraction was only 1805.8 ± 0.1 ppb in 1995, but unprecedented elevated ~ 100 ppb and reached a historic high of 1903.8 ± 0.1 ppb in 2016. The seasonal averages of atmospheric CH4 at WLG were ordered by summer, winter, autumn and spring, and the correlation slopes of ΔCO/ΔCH4 showed a maximum in summer and minimum in winter, which was almost opposite to other sites in the northern hemisphere, e.g., Mauna Loa, Jungfraujoch, and was caused by regional transport. Strong potential sources at WLG were predominately identified in northeast (cities, e.g., Xining, Lanzhou) and southwest (the Northern India), and air masses from west and northwest regions were accompanied with higher CH4 mole fractions than that from city regions. What is interesting is that obviously changes appeared in different observing periods. Generally, (i) the amplitudes of diurnal or seasonal cycles were continuously increasing over time, (ii) the wind sectors with elevated CH4 moved from ENE- ... -SSE sectors in early periods to NNE- ... -E sectors (city regions) in later years, (iii) the area of source regions was increasing along with the years, and strong sources gradually shifted from northeast to southwest, (iv) the annual growth rates in recent years (e.g., 2013–2016) were significantly larger than that in early periods (e.g., 1998–2012). We conclude that the site was more and more affected by regional sources along with the time. Northern India was possibly becoming the strongest source area to WLG rather than city regions before. The case study in the Tibetan Plateau showed that the atmospheric CH4 observed in Qinghai-Tibetan Plateau changed not as expected, the annual growth rate was even larger than that in city regions in some period (e.g., 7.3 ± 0.1 ppb yr−1 in 2013–2016). It is unambiguous that the anomalously fluctuations of atmospheric CH4 in this region are a warning to the world, its increasingly annual growth rate may be a dangerous signal to global climate change.
Rongzhi Tang, Quanyang Lu, Song Guo, Hui Wang, Kai Song, Ying Yu, Rui Tan, Kefan Liu, Ruizhe Shen, Shiyi Chen, Limin Zeng, Spiro D. Jorga, Zhou Zhang, Wenbin Zhang, Shijin Shuai, Allen L. Robinson, 2020
Abstract. In the present work, we performed chassis dynamometer experiments to investigate the emissions and secondary organic aerosol (SOA) formation potential of intermediate volatility organic compounds (IVOCs) from an on-road Chinese gasoline vehicle. High IVOCs emission factors (EFs) and distinct volatility distribution were recognized. The IVOCs EFs for the China V vehicle ranged from 12.1 to 226.3 mg · kg-fuel−1, with a median value of 83.7 mg · kg-fuel−1, which is higher than that from US vehicles. Besides, large discrepancy in volatility distribution and chemical composition of IVOCs from Chinese gasoline vehicle exhaust is discovered, with larger contributions of B14-B16 compounds and higher percentage of n-alkanes. Further we investigated the possible reasons that influence the IVOCs EFs and volatility distribution and found that fuel type, starting mode, operating cycles and acceleration rates could have an impact on the IVOCs EF. When using E10 (ethanol volume ratio of 10 %, v / v) as fuel, the IVOCs EF of the tested vehicle was lower than that using commercial China standard V fuel. Cold-start operation has higher IVOCs EF than hot-start operation. Chinese Light vehicles Test Cycle (CLTC) produced 70 % higher IVOCs than those from the World-wide harmonized Light-duty Test Cycle (WLTC). We found that vehicle emitted more IVOCs at lower acceleration rates, which leads to high EFs under CLTC. The only factor that may influence the volatility distribution and compound composition is the engine-aftertreatment system, which has compound and volatility selectivity in exhaust purification. These distinct characteristics in EFs and volatility may result in higher SOA formation potential in China. Using published yield data and surrogate equivalent method, we estimated SOA formation under different OA loading and NOx conditions. Results showed that under low and high NOx conditions at different OA loadings, IVOCs contributes more than 80% of the predicted SOA. Furthermore, we built up a parameterization method to simply estimate the vehicular SOA based on our bottom-up measurement of VOCs and IVOCs, which would provide another dimension of information when considering the vehicular contribution to the ambient OA. Our results indicate that vehicular IVOCs contribute significantly to SOA, implying that the importance of reducing IVOCs when making air pollution controlling policies in urban area of China.
Michał Gałkowski, Armin Jordan, Michael Rothe, Julia Marshall, Frank-Thomas Koch, Jinxuan Chen, Anna Agusti-Panareda, Andreas Fix, Christoph Gerbig, 2020
Abstract. The intensive measurement campaign CoMet 1.0 (Carbon dioxide and Methane mission) took place during May and June 2018, with a focus on greenhouse gases over Europe. CoMet 1.0 aimed at characterising the distribution of CH4 and CO2 over significant regional sources with the use of a fleet of research aircraft, as well as validating remote sensing measurements from state-of-the-art instrumentation installed on-board against a set of independent in-situ observations. Here we present the results of over 55 hours of accurate and precise in situ measurements of CO2, CH4 and CO mixing ratios made during CoMet 1.0 flights with a cavity ring-down spectrometer aboard the German research aircraft HALO, together with results from analyses of 96 discrete air samples collected aboard the same platform. A careful in-flight calibration strategy together with post-flight quality assessment made it possible to determine both the single measurement precision as well as biases against respective WMO scales. We compare the result of greenhouse gas observations against two of the available global modelling systems, namely Jena CarboScope and CAMS (Copernicus Atmosphere Monitoring Service). We find overall good agreement between the global models and the observed mixing ratios in the free-tropospheric range, characterised by very low bias values for the CAMS CH4 and the CarboScope CO2 products, with a mean free tropospheric offset of 0 (14) ppb and 0.8 (1.3) ppm respectively, with the quoted number giving the standard uncertainty in the final digits for the numerical value. Higher bias is observed for CAMS CO2 (equal to 3.7 (1.5) ppm), and for CO the model-observation mismatch is variable with height (with offset equal to −1.0 (8.8)). We also present laboratory analyses of air samples collected throughout the flights, which include information on the isotopic composition of CH_4, and we demonstrate the potential of simultaneously measuring δ13C-CH4 and δ2H-CH4 from air to determine the sources of enhanced methane signals using even a limited amount of discrete samples. Using flasks collected during two flights over the Upper Silesian Coal Basin (USCB, southern Poland), one of the strongest methane-emitting regions in the European Union, we were able to use the Miller-Tans approach to derive the isotopic signature of the measured source, with values of δ2H equal to −224.7 (6.6) permil and δ13C to −50.9 (1.1) permil, giving significantly lower d2H values compared to previous studies in the area.
Mirjana Najdek, Marino Korlević, Paolo Paliaga, Marsej Markovski, Ingrid Ivančić, Ljiljana Iveša, Igor Felja, Gerhard J. Herndl, 2020
Abstract. The dynamics of the physicochemical and biological parameters were followed during the decline of a Cymodocea nodosa meadow in the northern Adriatic Sea from July 2017 to October 2018. During the regular growth of C. nodosa from July 2017 to March 2018, C. nodosa successfully adapted to the changes of environmental conditions and prevented H2S accumulation by its re-oxidation, supplying the sediment with O2 from the water column and/or leaf photosynthesis. The C. nodosa decline was most likely triggered in April 2018 by a reduction of light availability which affected photosynthesis of C. nodosa and the oxidation capability of below-ground tissue. Simultaneously, a depletion of oxygen due to intense oxidation of H2S occurred in the sediment, thus creating anoxic conditions in most of the rooted areas. These linked negative effects on the plant performance caused an accumulation of H2S in the sediments of the C. nodosa meadow. During the decay of above- and below-ground tissues, culminating in August 2018, high concentrations of H2S were reached and accumulated in the sediment as well as in bottom waters. The influx of oxygenated waters in September 2018 led to the re-establishment of H2S oxidation and recovery of the below-ground tissue. Our results indicate that if disturbance of environmental conditions, particularly those compromising the light availability, take place during the recruitment phase of plant growth when metabolic needs are at maximum and stored reserves minimal, a sudden and drastic decline of the seagrass meadow occurs.
Nora Richter, James M. Russell, Johanna Garfinkel, Yongsong Huang, 2020
Abstract. Temperature reconstructions from the Northern Hemisphere (NH) generally indicate cooling over the Holocene which is often attributed to decreasing summer insolation. However, climate model simulations predict that rising atmospheric CO2 concentrations and the collapse of the Laurentian ice sheet caused mean annual warming during this epoch. This contrast could reflect a bias in temperature proxies, and particularly a lack of proxies that record cold (late fall–early spring) season temperatures, or inaccuracies in climate model predictions of NH temperature. We reconstructed winter–spring temperatures during the Common Era (i.e. the last 2000 years) using alkenones, lipids produced by Isochrysidales haptophyte algae that bloom during spring ice-off, preserved in sediments from Vestra Gíslholtsvatn (VGHV), southwest Iceland. Our record indicates cold-season temperatures warmed during the last 2000 years, in contrast to NH averages. Sensitivity tests with a lake energy balance model show that this warming is likely driven by increasing winter–spring insolation. We also found distinct seasonal differences in centennial-scale, cold-season temperature variations in VGHV compared to existing records of summer and annual temperatures from Iceland. Sustained or abrupt cooling in VGHV temperatures are associated with the cumulative effects of solar minima and volcanic eruptions, and potentially ocean and sea-ice feedbacks associated with cooling in the broader Arctic. However, multi-decadal to centennial-scale changes in cold season temperatures were strongly modulated by internal climate variability, i.e. the North Atlantic Oscillation, which can result in winter warming in Iceland even after a major negative radiative perturbation.
Wan Ahmad Syazani Mohamed, Noor Zafirah Ismail, Eshaifol Azam Omar, Nozlena Abdul Samad, Siti Khadijah Adam, Sharlina Mohamad, Evidence-Based Complementary and Alternative Medicine, 2020, 1-9, 2020
Introduction. Propolis has been used traditionally in several countries for treating various diseases as it possessed healing properties including antioxidant and anticancer qualities. In Peninsular Malaysia, Tetrigona apicalis is one of the species of stingless bees mainly found in virgin jungle reserves which largely contribute to propolis production. Therefore, this study is designed to evaluate the phytochemical contents, antioxidant properties, and the cytotoxic effect of ethanolic crude of propolis extract against MCF7 and MCF 10A cell lines. Method. The ethanolic extract of propolis (EEP) was extracted using 80% ethanol. Identification of phytochemical contents and antioxidant properties of EEP was analysed by gas chromatography-mass spectrometry (GC-MS) and using 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method, respectively. The EEP cytotoxic activity was evaluated on MCF7 and MCF 10A using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results. Phytochemical contents of EEP demonstrated 28 compounds in which caryophyllene (99%), β-amyrin (96%), α-amyrin (93%), and caryophyllene oxide (93%) were the main compounds. The percentage of ABTS+ scavenging activity of EEP showed an inhibition of 9.5% with half-inhibitory concentration (IC50) value of 1.68 mg/mL. The EEP reduced MCF7 cells viability at IC50 value of 62.24 μg/mL, 44.15 μg/mL, and 32.70 μg/mL at 24, 48, and 72 hours, respectively. The IC50 value of MCF 10A was 49.55 μg/mL, 56.05 μg/mL, and 72.10 μg/mL at 24, 48, and 72 hours, respectively. The EEP cytotoxic effect of T. apicalis was more selective towards MCF7 at 72-hour incubation with a selectivity index (SI) of 2.20. Conclusion. The EEP has been shown to have antioxidants and potential bioactive compounds and inhibited proliferation of the MCF7 cells. Further studies on the EEP role in the apoptosis pathway and its screening towards other cell lines will be evaluated.
Qi Chen, Xiaoge Zhao, Tingya Lu, Yao Yang, Yi Hong, Minyi Tian, Ying Zhou, BioMed Research International, 2021, 1-11, 2021
Rhynchanthus beesianus is a medicinal, ornamental, and edible plant, and its essential oil has been used as an aromatic stomachic in China. In this study, the chemical constituents, antibacterial, and anti-inflammatory properties of flower essential oil (F-EO), leaf essential oil (L-EO), and stem essential oil (S-EO) of R. beesianus were investigated for the first time. According to the GC-FID/MS assay, the F-EO was mainly composed of bornyl formate (21.7%), 1,8-cineole (21.6%), borneol (9.7%), methyleugenol (7.7%), β-myrcene (5.4%), limonene (4.7%), camphene (4.5%), linalool (3.4%), and α-pinene (3.1%). The predominant components of L-EO were bornyl formate (33.9%), borneol (13.2%), 1,8-cineole (12.1%), methyleugenol (8.0%), camphene (7.8%), bornyl acetate (6.2%), and α-pinene (4.3%). The main components of S-EO were borneol (22.5%), 1,8-cineole (21.3%), methyleugenol (14.6%), bornyl formate (11.6%), and bornyl acetate (3.9%). For the bioactivities, the F-EO, L-EO, and S-EO exhibited significant antibacterial property against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli with the inhibition zones (7.28–9.69 mm), MIC (3.13–12.50 mg/mL), and MBC (6.25–12.50 mg/mL). Besides, the F-EO, L-EO, and S-EO significantly inhibited the production of proinflammatory mediator nitric oxide (NO) (93.15–94.72%) and cytokines interleukin-6 (IL-6) (23.99–77.81%) and tumor necrosis factor-α (TNF-α) (17.69–24.93%) in LPS-stimulated RAW264.7 cells at the dose of 128 μg/mL in the absence of cytotoxicity. Hence, the essential oils of R. beesianus flower, leaf, and stem could be used as natural antibacterial and anti-inflammatory agents with a high application potential in the pharmaceutical and cosmetic fields.
Kamal Belhaj, Farid Mansouri, Marianne Sindic, Marie-Laure Fauconnier, Mohamed Boukharta, Hana Serghini Caid, Ahmed Elamrani, Journal of Food Quality, 2021, 1-9, 2021
Twenty Beni-Guil-PGI female lambs were used to study the effects of rearing season on meat quality characteristics, fatty acids profile, and lipid content. The animals were reared according to the pastoral-transhumant system in the eastern region of Morocco. The treatments consisted of 10 female lambs reared in summer-autumn (SA) and slaughtered at winter season and 10 female lambs reared in winter-spring (WS) and slaughtered at spring season. After the slaughter, the longissimus lumborum was collected for each animal for meat quality analysis. Compared to lambs reared in SA, the meat from the WS group showed higher ( p < 0.01 ) pH, chroma, and lightness values (5.79 vs. 5.72, 23.97 vs. 18.46, and 47.03 vs. 41.04, respectively). On the other hand, the meat from WS presented higher ( p < 0.05 ) intramuscular fat content (5.14 % vs. 3.82%, respectively). However, the intramuscular fat of the lambs reared in SA was characterized by greater ( p < 0.01 ) PUFA percentage (16.82% vs. 12.40%, respectively), thrombogenic ( p < 0.001 ) and atherogenic index ( p < 0.001 ), and PUFA/SFA ratio ( p < 0.01 ; 0.42 vs. 0.25, respectively). Nevertheless, those reared in WS season have a higher ( p < 0.001 ) PUFA n − 3 (2.58% vs. 1.14%, respectively) content, and therefore favorable ( p < 0.001 ) n − 6/n − 3 ratio (3.78 vs. 12.98, respectively).
Kai Xu, Xun Gao, Miaomiao Chi, Kexin Chen, Yue Zhang, Weihao Kong, Ziying Li, Shengnan Huang, Kunming Qin, Journal of Analytical Methods in Chemistry, 2021, 1-8, 2021
As a popular fermented condiment in oriental countries, soy sauce plays a more and more important role in modern food culture due to its unique smell and delicious taste. With the help of microwave extraction and gas chromatography-tandem mass spectrometry, the sample preparation method is aimed to determine the content of cyclohexane, benzene, toluene, chlorobenzene, and styrene in soy sauce. The method was validated by examining the linearity, accuracy, specificity, precision, the limit of detection, and quantitation. Meanwhile, three key factors have an impact on the efficiency and accuracy of the method including extracting solvent, temperature, and time which were optimized. The result shows that the recoveries of spiked analytes ranged from 80.86% to 105.71%, the relative standard deviation of intraday and interday precision was no more than 12.1% and 12.5%, and the limit of detection and quantitation were 0.25–1.00 ng/mL and 0.50–2.00 ng/mL, respectively. The results also indicated that the proposed method was a simple, reliable, and sensitive approach for the determination trace amount of five harmful volatile organic compounds from soy sauce.
Sanaz Gholampour, Hossein Jalali, Rahele Zhiani, Hassan Rashidi, Alireza Motavalizadehkakhky, Journal of Sensors, 2021, 1-9, 2021
Visual detection of meat spoilage was performed based on hydrolysis-induced silver metallization on gold nanoparticles (Au NPs). The hydrolysis of 4-I-benzene-bounded Wang resin was induced by the release of a biogenic amine followed by Au-catalyzed Heck cross-coupling reaction that made silver-coated gold core-shell NPs (Au@Ag) in the presence of Ag ions (Ag metallization). A portable sensory cap was designed by this hypothesis and the successful results were obtained for histamine, trimethylamine, and a spoilage sheep meat. With this protocol, the localized surface plasmon resonance (LSPR) is tuned for absorption of Au NPs and leads to LSPR peak blue shift of gold nanoparticles due to the Ag metallization and the preparation of Au@Ag core-shell NPs. Au NPs and the resulting Au@Ag NPs were characterized by transmission electron microscopy (TEM), BET, ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), energy dispersive X-ray (EDX), and dynamic light scattering (DLS) analyses. Also, various control experiments were set up to credit the portable sensory tube.
Seyedeh Narjes Abootalebi, Seyyed Mojtaba Mousavi, Seyyed Alireza Hashemi, Eslam Shorafa, Navid Omidifar, Ahmad Gholami, Journal of Nanomaterials, 2021, 1-12, 2021
Acinetobacter baumannii (A. baumannii) is a dangerous nosocomial pathogen in intensive care units, causing fatal clinical challenges and mortality. In this study, the green synthesis of silver nanoparticles (AgNPs) using the extract of Ferula asafetida and the chemical synthesis of AgNPs were carried out to evaluate their effects on A. baumannii bacterial strain and a human adenocarcinoma cell line. The NPs were characterized using several techniques, including field emission-scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, UV-visible spectroscopy, and Fourier-transform infrared spectroscopy. After synthesis, the arrangement of AgNPs was confirmed based on the maximum absorption peak at 450 nm. The results showed that the AgNPs had a hexagonal structure. The antimicrobial activity of biogenic NPs significantly increased and reached a minimum inhibitory concentration of 2 μg/mL. The nanomaterials did not exhibit any toxic effects on the human cell line at certain concentrations and showed improvements compared to chemically synthesized AgNPs. However, at higher concentrations (100 μg/mL), the cytotoxicity increased. Finally, it was concluded that biosynthesized AgNPs had significant antimicrobial effects on A. baumannii isolated from intensive care units.
My Hien Thi Bach, Ngoc Thang Tran, Thanh Nha Thi Tran, Van Cuong Nguyen, Hong Anh Thi Nguyen, International Journal of Chemical Engineering, 2021, 1-9, 2021
This study aimed to synthesize alumina from an inorganic aluminum nitrate precursor in various binary solvent systems of ethanol and water using the sol-gel self-assembly (SSA) method, employing a triblock copolymer, pluronic P123, as the pore-directing agent. The resulting materials were implemented as a support for the cobalt (Co) catalyst in a methane dry reforming (MDR) reaction at 1073 K under 1 atm. Regardless of the water percentage used in the support synthesis, the methane dry reforming reaction over Co catalysts on alumina supports showed the negligible change in conversion during the 12 h reaction. Moreover, there was evidence of large quantities of amorphous carbon and graphitic carbon on the spent catalyst surface. However, the low oxidation temperature of these deposited carbons could help maintain the balance between the carbon formation and the carbon elimination processes on the catalyst surface during the reforming reaction, hence prolonging the lifetime of the catalyst. The high conversion of methane (CH4) from 64.6% to 82.8% and carbon dioxide (CO2) from 70.7% to 86.6% for the MDR reaction over the as-prepared alumina-supported Co catalyst demonstrated a significant improvement in catalyst production for the MDR reaction from the viewpoint of large-scale applications.
G. García Rosales, P. Ávila-Pérez, J.O. Reza-García, A. Cabral-Prieto, E.O. Pérez-Gómez, Journal of Chemistry, 2021, 1-13, 2021
This article reports on the preparation of iron nanoparticles (FeNPs) supported in chitosan beads (Chi-EDGE-Fe) for removing aldrin from aqueous solutions. The FeNPs and Chi-EDGE-Fe beads were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and the Mössbauer spectroscopy (MS) techniques. TEM, XRD, and MS showed that the FeNPs had core-shell structures consisting of a core of either Fe0 or Fe2B and a shell of magnetite. Furthermore, SEM images showed that Chi-EDGE-Fe beads were spherical with irregular surfaces and certain degrees of roughness and porosity, whilst the sorbent mean pore size was 204 nm, and the occluded iron nanoparticles in the chitosan material had diameters of 70 nm and formed agglomerates. The sorbent beads consisted of carbon, oxygen, chlorine, aluminum, silicon, and iron according to the SEM-EDS analysis. Functional groups such as O-H, C-H, -CH2, N-H, C-O, C-OH, and Fe-OH were detected in the FTIR spectra. In addition, a characteristic band appeared at about 1700 cm−1 after the sorption process involving aldrin. MS also showed that the iron nanoparticles in the beads probably oxidized into NPs of α-Fe2O3 as a result of the supporting process. The isotherm of the aldrin removal followed the Langmuir–Freundlich model and presented a maximum adsorption capacity of 74.84 mg/g, demonstrating that chitosan-Fe beads are promising sorbents for the removal of toxic pollutants in aqueous solutions.
Hai-Xin Hua, Hai-Bo Deng, Xiu-Ling Huang, Chang-Qing Ma, Ping Xu, Ye-Hua Cai, Hai-Tang Wang, Oxidative Medicine and Cellular Longevity, 2021, 1-8, 2021
Objective. The aim of the study was to investigate the potential effects of waste anesthetic gas (WAG) on oxidative stress, DNA damage, and vital organs. Methods. A total of 150 members of the staff at a hospital were assigned to an exposure group or control group. The 68 operating room (OR) staff in the exposure group were exposed to WAG, and the 82 non-OR staff in the control group were not exposed to WAG. Air samples were collected in the OR, and the sevoflurane concentrations in the samples were determined. Superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and malondialdehyde (MDA) in plasma from the participants were determined to assess oxidative stress. Western blot analysis was used to detect γH2AX in peripheral blood to assess DNA damage. Hematopoietic parameters, liver function, kidney function, and changes in electrophysiology were assessed to identify the effects on the vital organs. Results. The mean (±standard deviation) sevoflurane concentration in 172 air samples from 22 operating rooms was 1.11 ± 0.65 ppm . The superoxide dismutase activity and vital organ parameters (lymphocyte, hemoglobin, and total protein concentrations and heart rate) were significantly lower ( P < 0.05 ) in the exposed group than the control group. The malondialdehyde, total bilirubin, and creatinine concentrations and QT and QTc intervals were significantly higher ( P < 0.05 ) in the exposed group than the control group. There were no significant differences between the glutathione peroxidase activities and γH2AX concentrations for the exposed and control groups. Conclusions. Long-term occupational exposure to waste anesthetic gas may affect the antioxidant defense system and probably affects vital organ functions to some extent. No correlation between DNA damage and chronic exposure to WAG was observed.
Only abstracts that are published under are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Agilent HP 6890 in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.