Agilent 1100 - at QuestPair.com/equipment
Agilent 1100
Selling the Agilent 1100?
Sign Up
Can‘t find Agilent 1100 offers?
Post a request
Description
series system, system, time, series, liquid chromatographymass spectrometry system, chromatography system
This model was found at
1235 locations
The model is used in
59 countries
Usage per year (up to 2020)
Loading histogram...
160 related research fields
Loading pie chart...

About the Agilent 1100

The model Agilent 1100 was found in 1235 unique locations in 59 countries where it was mentioned from 2003 until recentlyIt is used by scientists in various research fields such as Drug Discovery, Molecular Medicine, Pharmaceutical Science, Biochemistry, and Organic Chemistry. The model is also used in Analytical Chemistry, General Medicine, Molecular Biology, Pharmacology, Physical and Theoretical Chemistry, Chemistry (miscellaneous), General Chemistry, Food Science, Biotechnology, Clinical Biochemistry, Genetics, Catalysis, General Biochemistry, Genetics and Molecular Biology, Microbiology, Plant Science, Toxicology, Cell Biology, Spectroscopy, Bioengineering, Complementary and alternative medicine, Computer Science Applications, Inorganic Chemistry, Pharmacology (medical), Biophysics, and Ecology, Evolution, Behavior and Systematics.
Loading map...

Research that uses the Agilent 1100

Warunyoo Phannasorn, Arpamas Chariyakornkul, Phumon Sookwong, Rawiwan Wongpoomchai, Oxidative Medicine and Cellular Longevity, 2021, 1-13, 2021
Rice bran oil (RBO) comprises various nutrients and phytochemicals which exhibit several health benefits. There are no studies regarding the functional effects of different colours of RBO. This study was aimed to compare the constituents and antioxidant activities of white rice bran oil (WRBO) and coloured rice bran oil (CRBO). Each RBO showed similar free fatty acid profiles. However, greater amounts of vitamin E, phytosterols, carotenoids, and chlorophylls were found in CRBO, which had lower γ-oryzanol content than WRBO. Oxidative stress was induced in male mice by an overdose of acetaminophen (APAP) at 300 mg/kg body weight. The mice were then fed with RBO at the equivalent dose to 100 mg/kg body weight of γ-oryzanol three hours later and sacrificed six hours after APAP treatment. The administration of 100 mg γ-oryzanol equivalent in CRBO ameliorated APAP-induced hepatotoxicity in mice more strongly than 100 mg γ-oryzanol equivalent in WRBO, as evidenced by the significant reduction of serum ALT, hepatocellular necrosis, and hepatic lipid peroxidation. CRBO could improve xenobiotic-metabolizing and antioxidant enzyme activities, including glutathione S -transferase, superoxide dismutase, glutathione peroxidase, and glutathione reductase, and also increase mRNA expression of various antioxidant-responsive genes. Vitamin E, phytosterols, carotenoids, and chlorophyll might be the protective compounds in CRBO that alleviate APAP-induced hepatotoxicity through the interruption of APAP metabolism and the activation of antioxidant systems at both transcriptional and enzymatic levels. These findings might provide a protective role of CRBO on oxidative stress associated with several degenerative diseases.
Minh Giang Phan, Thi Thao Do, Thi Nga Nguyen, Thi Viet Huong Do, Ngoc Phuc Dong, Minh Trang Vu, Evidence-Based Complementary and Alternative Medicine, 2021, 1-12, 2021
Eupatorium japonicum Thunb. of the plant family Asteraceae is a popular traditional herb in Vietnam. However, its chemical constituents as well as bioactive principles have not been investigated yet. We investigated the phytochemistry of E. japonicum in Vietnam and isolated seventeen compounds (1–17) including phytosterols, terpenoids, phenolic acids, flavonoids, fatty alcohols, and fatty acids. They were structurally determined by MS and NMR analysis. Except for compounds 6 and 12, all the other compounds were identified for the first time from E. japonicum. Since many sesquiterpene lactones with α-methylene γ-lactone ring are reported as anti-inflammatory and anticancer agents, eupatoriopicrin (10), 1-hydroxy-8-(4,5-dihydroxytigloyloxy)eudesma-4(15),11(13)-dien-6,12-olide (11) were selected among the isolates for biological assays. Compound 10 was identified as the main bioactive sesquiterpene lactone of E. japonicum showing its potent anti-inflammatory and cytotoxic activity through inhibiting NO production and the growth of HepG2 and MCF-7 human cancer cell lines. For the first time, eupatoriopicrin (10) was demonstrated to strongly inhibit NTERA-2 human cancer stem cell (CSC) line in vitro. It is noticeable that the cytotoxicity of eupatoriopicrin against NTERA-2 cells is mediated by its apoptosis-inducing capability of 10 as demonstrated by the results of Hoechst 33342 staining, flow cytometry apoptosis analysis, and caspase-3 activity assays. The biological activities of the main bioactive constituents 1–7, 10, 12, and 15 supported the reported anti-inflammatory and anticancer properties of extracts from E. japonicum.
J. B. Ahmad, E. O. Ajani, S. Sabiu, Evidence-Based Complementary and Alternative Medicine, 2021, 1-12, 2021
Diabetes mellitus (DM) has become a global scourge, and there is a continuous search for novel compounds as viable alternatives to synthetic drugs which are often accompanied by severe adverse effects. Aristolochia ringens is among the scientifically implicated botanicals effective in the management of several degenerative diseases including DM. The current study evaluated the inhibitory mechanism(s) of root extract of A. ringens on α-amylase and α-glucosidase in vitro and in silico, while its constituents were characterized using liquid chromatography-mass spectrometric technique. The extract had concentration-dependent inhibitory effect on the study enzymes, and the inhibition compared well with that of standard drug (acarbose) with respective IC50 values of 0.67 mg/mL (α-amylase) and 0.57 mg/mL (α-glucosidase) compared with that of the extract (0.63 and 0.54 mg/mL). The extract competitively and uncompetitively inhibited α-amylase and α-glucosidase, respectively. Of the identified compounds, dianoside G (−12.4, −12.5 kcal/mol) and trilobine (−10.0, −10.0 kcal/mol) had significant interactions with α-amylase and α-glucosidase, respectively, while magnoflorine and asiatic acid also interacted keenly with both enzymes, with quercetin 3-O-glucuronide and strictosidine showing better affinity towards α-glucosidase. These observations are suggestive of involvement of these compounds as probable ligands contributing to antidiabetic potential of the extract. While studies are underway to demystify the yet to be identified compounds in the extract, the data presented have lent scientific credence to the acclaimed in vivo antidiabetic potential of the extract and suggested it as a viable source of oral hypoglycaemic agent.
Sijie Zhang, Linlin Wu, Xiaoping Wang, Xingchu Gong, Haibin Qu, 2020
Abstract Background Ginkgo biloba leaf extract (EGBL) is one of the most commonly used and most studied herbal medicines around the world. Taking into account that previously reported HPLC-ELSD methods for terpene trilactones determination in EGBL are time-consuming with complicated sample preparation, it is reasonable and meaningful to developing a simple, sensitive and robust HPLC-MS method based on a novel analytical quality by design (AQbD) approach. Methods Firstly, analytical target profile (ATP) and systematic risk analysis were carried out to identify potential critical method attributes (CMAs) and critical method parameters (CMPs). Secondly, CMPs were identified using a standard partial regression coefficient method. Thirdly, Box-Behnken design (BBD) was employed to establish the quantitative relationship between CMAs and CMPs. Fourthly, the Monte Carlo simulation method was used to build hypercube design space. Then, the verification experiments were performed. Fifthly, the optimized method was validated and utilized. Finally, the paired t test was used to compare the developed method with HPLC-ELSD. Results After the screening experiments, flow rate of mobile phase, the proportion of formic acid in the mobile phase, gas flow rate and gas temperature were identified as CMPs. Models to quantitatively describe the relationship between CMAs and CMPs were built. The operational hypercube design spaces of the HPLC-MS method for terpene trilactones analysis in EGBL were successfully calculated and found to be robust, which led to the analytical control strategy. The verification experiments were successfully performed within the design space and model was found to be accurate. The method had been successfully used for quality analysis of development batches of EGBL and obtained almost identical results to data determinated using HPLC. Conclusions In this work, an analytical control strategy for HPLC-MS method for terpene trilactones analysis in EGBL was developed using AQbD concepts, which is promising for application to other Chinese medicines. The developed HPLC-MS method is an alternative method for quantification of terpene trilactones in commercial EGBL and will be applicable throughout the life cycle of the product.
Tim Keuler, Karl Gatterdam, Anil Akbal, Marta Lovotti, Michael Marleaux, Matthias Geyer, Eicke Latz, Michael Gütschow, Frontiers in Chemistry, 9, 2021
Extracellular signals drive the nucleation of the NLRP3 inflammasome which leads to the release of cytokines and causes inflammatory events. Hence, the inflammasome has gained enormous momentum in biomedical basic research. The detailed mechanisms of inflammasome generation and regulation remain to be elucidated. Our study was directed toward the design, convergent synthesis, and initial biochemical evaluation of activity-based probes addressing NLRP3. For this purpose, probes were assembled from a CRID3/MCC950-related NLRP3-binding unit, a linker portion and a coumarin 343 fluorophore or biotin. The affinity of our probes to NLRP3 was demonstrated through SPR measurements and their cellular activity was confirmed by reduction of the interleukin 1β release from stimulated bone marrow-derived macrophages. The initial characterizations of NLRP3-targeting probes highlighted the coumarin probe 2 as a suitable tool compound for the cellular and biochemical analysis of the NLRP3 inflammasome.
Chuanxi Yang, Jing Zhang, Tingting Wu, Kun Zhao, Xiaoguang Wu, Jing Shi, Wei Sun, Xiangqing Kong, Frontiers in Genetics, 12, 2021
This study aimed at exploring the gene expression and metabolites among multisite adipose-derived mesenchymal stem cells (ASCs) and investigate the metabolic pathway using a multi-omics analysis. Subcutaneous adipose-derived mesenchymal stem cells (SASCs), perirenal adipose-derived mesenchymal stem cells (PASCs), and epididymal adipose-derived mesenchymal stem cells (EASCs) were isolated from Sprague Dawley rats. RNA and metabolites were extracted and sequenced using transcriptomics and metabolomics analyses, respectively. There were 720 differentially expressed genes (DEGs) in EASCs and 688 DEGs in PASCs compared with SASCs; there were 166 unique DEGs in EASCs, 134 unique DEGs in PASCs, and 554 common DEGs between EASCs and PASCs. Furthermore, there were 226 differential metabolites in EASCs, 255 differential metabolites in PASCs, 83 unique differential metabolites in EASCs, 112 unique differential metabolites in PASCs, and 143 common differential metabolites between EASCs and PASCs. The transcriptomics and metabolomics analyses identified four hub genes, one in EASCs and three in PASCs. There are functional differences among multisite ASCs that may be related to the hub genes Atac2, Rrm1, Rrm2, and Gla. The relevant signaling pathways are the Ras signaling pathway, HIF-1 signaling pathway, and the p53 signaling pathway. In conclusion, compared with SASCs, our multi-omics analysis identified that EASCs with higher Acat2 expression may be more correlated to fat metabolism and insulin resistance, while PASCs with abnormal expression of Rrm1/2 and Gla may be more correlated with some malignant tumors and cardiac-cerebral vascular disease.
Liya Zhang, Laila Ben Said, Moussa Sory Diarra, Ismail Fliss, Frontiers in Microbiology, 12, 2021
The currently most utilized antimicrobial agent in poultry processing facilities is peracetic acid, a chemical increasingly recognized as hazardous to human health. We evaluated the efficacy of mixtures of natural antimicrobial compounds, namely reuterin, microcin J25, and lactic acid, for reducing the viability of Salmonella enterica and total aerobes on broiler chicken carcasses. The compounds were compared singly and in combination with water and 0.1% peracetic acid. The minimum inhibitory concentrations of reuterin, lactic acid, and microcin J25 against S. enterica serovar Enteritidis were respectively 2 mM, 0.31%, and 0.03 μM. In vitro, the combinations of reuterin + lactic acid and reuterin + microcin J25 were synergic, making these compounds effective at four times lower concentrations than those used alone. Salmonella viable counts fell to zero within 10 min of contact with reuterin + lactic acid at 10 times the concentrations used in combination, compared to 18 h in the case of reuterin + microcin J25. Sprayed onto chilled chicken carcasses, this reuterin + lactic acid mixture reduced Salmonella spp. counts by 2.02 Log CFU/g, whereas reuterin + microcin J25 and peracetic acid reduced them by respectively 0.83 and 1.13 Log CFU/g. The synergy of reuterin with lactic acid or microcin J25 as inhibitors of bacterial growth was significant. Applied as post-chill spray, these mixtures could contribute to food safety by decreasing Salmonella counts on chicken carcasses.
Nicole Kemberly R. Rocha, Rafael Themoteo, Helena Brentani, Orestes V. Forlenza, Vanessa De Jesus Rodrigues De Paula, Frontiers in Neuroscience, 14, 2020
Neuronal-glial interactions are critical for brain homeostasis, and disruption of this process may lead to excessive glial activation and inadequate pro-inflammatory responses. Abnormalities in neuronal-glial interactions have been reported in the pathophysiology of Alzheimer’s disease (AD), where lithium has been shown to exert neuroprotective effects, including the up-regulation of cytoprotective proteins. In the present study, we characterize by Gene Ontology (GO) the signaling pathways related to neuronal-glial interactions in response to lithium in a triple-transgenic mouse model of AD (3×-TgAD). Mice were treated for 8 months with lithium carbonate (Li) supplemented to chow, using two dose ranges to yield subtherapeutic working concentrations (Li1, 1.0 g/kg; and Li2, 2.0 g/kg of chow), or with standard chow (Li0). The hippocampi were removed and analyzed by proteomics. A neuronal-glial interaction network was created by a systematic literature search, and the selected genes were submitted to STRING, a functional network to analyze protein interactions. Proteomics data and neuronal-glial interactomes were compared by GO using ClueGo (Cytoscape plugin) with p ≤ 0.05. The proportional effects of neuron-glia interactions were determined on three GO domains: (i) biological process; (ii) cellular component; and (iii) molecular function. The gene ontology of this enriched network of genes was further stratified according to lithium treatments, with statistically significant effects observed in the Li2 group (as compared to controls) for the GO domains biological process and cellular component. In the former, there was an even distribution of the interactions occurring at the following functions: “positive regulation of protein localization to membrane,” “regulation of protein localization to cell periphery,” “oligodendrocyte differentiation,” and “regulation of protein localization to plasma membrane.” In cellular component, interactions were also balanced for “myelin sheath” and “rough endoplasmic reticulum.” We conclude that neuronal-glial interactions are implicated in the neuroprotective response mediated by lithium in the hippocampus of AD-transgenic mice. The effect of lithium on homeostatic pathways mediated by the interaction between neurons and glial cells are implicated in membrane permeability, protein synthesis and DNA repair, which may be relevant for the survival of nerve cells amidst AD pathology.
Olha M. Strilbytska, Alina Zayachkivska, Alexander Koliada, Fabio Galeotti, Nicola Volpi, Kenneth B. Storey, Alexander Vaiserman, Oleh Lushchak, Frontiers in Physiology, 11, 2020
Anise hyssop, Agastache foeniculum, is a widely used medicinal herb with known antioxidant properties. We studied how dietary supplementation with dried A. foeniculum leaf powder affected physiological and metabolic traits as well as activities of antioxidant enzymes and markers of oxidative stress in Drosophila melanogaster. Dietary hyssop extended the lifespan in a sex and genotype independent manner over a broad range of concentrations up to 30 mg/ml. Dietary supplementation with the herb significantly increased fecundity, resistance to oxidative stress and starvation. Higher transcript levels of Drosophila insulin-like peptide (dilp2) and decreased dilp3 and dilp6 transcripts together with increased levels of glycogen and triacylglycerols support an alteration of insulin signaling by the plant extract. Increased enzymatic activities of superoxide dismutase and aconitase as well as elevated protein and low molecular mass thiols also supported an alteration of free radical process in flies treated with dietary A. foeniculum leaf powder. Thus, physiological and metabolic traits as well as free radical processed may be affected by active compounds detected in extracts of anise hyssop leaves and contribute to the increased lifespan and reproductive (egg-laying) activity observed.
Chenfei Lu, Yajun Li, Yumeng Cui, Jiangshan Ren, Fangting Qi, Jiaping Qu, He Huang, Silan Dai, Frontiers in Plant Science, 12, 2021
Polyacylated anthocyanins with multiple glycosyl and aromatic acyl groups tend to make flowers display bright and stable blue colours. However, there are few studies on the isolation and functional characterization of genes involved in the polyacylated anthocyanin biosynthesis mechanism, which limits the molecular breeding of truly blue flowers. Senecio cruentus is an important potted ornamental plant, and its blue flowers contain 3′,7-polyacylated delphinidin-type anthocyanins that are not reported in any other plants, suggesting that it harbours abundant gene resources for the molecular breeding of blue flowers. In this study, using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis of blue, carmine and white colours of cineraria cultivars “Venezia” (named VeB, VeC, and VeW, respectively), we found that 3′,7-polyacylated anthocyanin, cinerarin, was the main pigment component that determined the blue colour of ray florets of cineraria. Based on the transcriptome sequencing and differential gene expression (DEG) analysis combined with RT- and qRT-PCR, we found two genes encoding uridine diphosphate glycosyltransferase, named ScUGT1 and ScUGT4; two genes encoding acyl-glucoside-dependent glucosyltransferases which belong to glycoside hydrolase family 1 (GH1), named ScAGGT11 and ScAGGT12; one gene encoding serine carboxypeptidase-like acyltransferase ScSCPL2; and two MYB transcriptional factor genes ScMYB2 and ScMYB4, that were specifically highly expressed in the ray florets of VeB, which indicated that these genes may be involved in cinerarin biosynthesis. The function of ScSCPL2 was analysed by virus-induced gene silencing (VIGS) in cineraria leaves combined with HPLC-MS/MS. ScSCPL2 mainly participated in the 3′ and 7-position acylation of cinerarin. These results will provide new insight into the molecular basis of the polyacylated anthocyanin biosynthesis mechanism in higher plants and are of great significance for blue flower molecular breeding of ornamental plants.
Michele Ciriello, Luigi Formisano, Christophe El-Nakhel, Giandomenico Corrado, Antonio Pannico, Stefania De Pascale, Youssef Rouphael, Frontiers in Plant Science, 12, 2021
Sweet basil (Ocimum basilicum L.) is an economically important leafy vegetable especially in Mediterranean countries. In Italian gastronomy, the large elliptical leaves of the Genovese type are mostly used for the well-known pesto sauce, and almost all (>90%) professional production is for the food industry. The growing demand for fresh leaves with standardized technological and sensory characteristics has prompted basil producers to adopt advanced cultivation methods such as the floating raft system (FRS). The aim of this study was to evaluate the productive, qualitative, and physiological performance of three Genovese basil cultivars (“Aroma 2,” “Eleonora,” and “Italiano Classico”) in two successive harvests and at two densities (159 and 317 plants m–2). Caffeic, chicoric, rosmarinic, and ferulic acid were determined through the high-performance liquid chromatography (HPLC) system, whereas the extraction and quantification of the volatile organic compounds (VOCs) were performed by solid-phase microextraction (SPME) and gas chromatography coupled to a mass spectrometer (GC/MS). “Aroma 2” showed the highest fresh yield and photosynthetic rate together with the lowest nitrate content. For all the tested cultivars, the higher density, while reducing the number of leaves per plant, resulted in higher fresh and dry production per unit area, without altering the aroma profile. Successive harvests resulted in a significant increase in both the yield (37.5%) and the total phenolic acids (75.1%) and favored Eucalyptol and 1-octen-3-ol accumulation (+25.9 and +15.1%, respectively). The here presented comprehensive and multifactorial assessment of the productive and qualitative response of basil provides evidence of the positive effects (from biomass to specialized metabolites) that can be obtained from the management of the pre-harvest factors in soilless cultivation. In addition, it also highlights the role and constraints of the genetic factor in the observed response. We also discuss the implications of our work considering the impact for the food processing industry. Future research may explore the phenolic acids accumulation as a possible fortification means to extend the pesto sauce shelf life, reducing the need of added antioxidants and thermal processing.
Aneta Kopeć, Joanna Skoczylas, Elżbieta Jędrszczyk, Renata Francik, Beata Bystrowska, Jerzy Zawistowski, Agriculture, 10, 40 (2), 2020
This study was designed to determine the chemical composition, antioxidant activity, and selected bioactive compound content and occurrence in whole immature and mature garlic plants grown from air bulbils. Two winter garlic cultivars, Harnaś and Ornak, of Polish origin, were cultivated from air bulbils at the Experimental Station of the Agricultural University in Kraków, Poland. Harvest bunching of garlic of both cultivars was carried out in May and in June. Mature plants were harvested in July. In whole plant proximate analysis, the concentration of vitamin C, total polyphenols, antioxidant activity, carotenoids, chlorophyll a and b, as well as glutathione level were determined. P-coumaric acid was found in Harnaś and Ornak samples collected in May. Sinapinic acid was identified in Ornak samples collected in June and July. Identification of sulphur compounds depended on the term of harvesting. Significantly higher content of total phenolic compounds, antioxidant activity, as well as other bioactive compounds, was measured in the Harnaś and Ornak cultivars harvested in May. A significantly lower level of bioactive compounds was determined in mature plants harvested in July. The organosulfur compound profile and polyphenolic profile depended on the time of harvesting. Immature garlic cultivated from air bulbils is recognized as a potential source of bioactive compounds in human nutrition, however, more research, in particular in vivo studies, is required to confirm its functional properties.
Anthony Verderosa, Rabeb Dhouib, Kathryn Fairfull-Smith, Makrina Totsika, Antibiotics, 8, 19 (1), 2019
Fluorescent probes are widely used for imaging and measuring dynamic processes in living cells. Fluorescent antibiotics are valuable tools for examining antibiotic–bacterial interactions, antimicrobial resistance and elucidating antibiotic modes of action. Profluorescent nitroxides are ‘switch on’ fluorescent probes used to visualize and monitor intracellular free radical and redox processes in biological systems. Here, we have combined the inherent fluorescent and antimicrobial properties of the fluoroquinolone core structure with the fluorescence suppression capabilities of a nitroxide to produce the first example of a profluorescent fluoroquinolone-nitroxide probe. Fluoroquinolone-nitroxide (FN) 14 exhibited significant suppression of fluorescence (>36-fold), which could be restored via radical trapping (fluoroquinolone-methoxyamine 17) or reduction to the corresponding hydroxylamine 20. Importantly, FN 14 was able to enter both Gram-positive and Gram-negative bacterial cells, emitted a measurable fluorescence signal upon cell entry (switch on), and retained antibacterial activity. In conclusion, profluorescent nitroxide antibiotics offer a new powerful tool for visualizing antibiotic–bacterial interactions and researching intracellular chemical processes.
Juan Peris-Vicente, Daniel García-Ferrer, Pooja Mishra, Jaume Albiol-Chiva, Abhilasha Durgbanshi, Samuel Carda-Broch, Devasish Bose, Josep Esteve-Romero, Antibiotics, 8, 226 (4), 2019
A method based on micellar liquid chromatography was developed to determine oxolinic acid, ciprofloxacin, enrofloxacin, and sarafloxacin in eggs and egg products. The antimicrobial drugs were obtained in a micellar solution which was directly injected. The analytes were resolved using a C18 column and a mobile phase of 0.05 M sodium dodecyl sulfate—7.5% 1-propanol—0.5% triethylamine, buffered at pH 3 with phosphate salt, running under the isocratic mode. The signal was monitored by fluorescence. Validation was successfully performed according to the EU Commission Decision 2002/657/EC in terms of specificity, calibration range (LOQ to 1 mg/kg), linearity (R2 > 0.9991), limit of detection and decision limit (0.01–0.05 mg/kg), limit of quantification (0.025–0.150 mg/kg), detection capability (<0.4 times decision limit), trueness (−14.2% to +9.8%), precision (<14.0%), robustness, and stability. The procedure was environmentally friendly, safe, easy-to-conduct, inexpensive, and had a high sample throughput, thus it is useful for routine analysis as a screening method in a laboratory for food residue control.
Naila Boby, Muhammad Aleem Abbas, Eon-Bee Lee, Zi-Eum Im, Walter H. Hsu, Seung-Chun Park, Antioxidants, 10, 439 (3), 2021
Pyrus ussuriensis Maxim (Korean pear) has been used for hundreds of years as a traditional herbal medicine for asthma, cough, and atopic dermatitis in Korea and China. Although it was originally shown to possess anti-inflammatory, antioxidant, and antiatopic properties, its gastroprotective effects have not been investigated. In the present study, we evaluated the protective effects of Pyrus ussuriensis Maxim extract (PUE) against ethanol-induced gastritis in rats. The bioactive compound profile of PUE was determined by gas chromatography mass spectroscopy (GC-MS) and high-performance liquid chromatography (HPLC). The gastroprotection of PUE at different doses (250 and 500 mg/kg body weight) prior to ethanol ingestion was evaluated using an in vivo gastritis rat model. Several endpoints were evaluated, including gastric mucosal lesions, cellular degeneration, intracellular damage, and immunohistochemical localization of leucocyte common antigen. The gastric mucosal injury and ulcer score were determined by evaluating the inflamed gastric mucosa and by histological examination. To identify the mechanisms of gastroprotection by PUE, antisecretory action and plasma prostaglandin E2 (PGE2), gastric mucosal cyclic adenosine monophosphate (cAMP), and histamine levels were measured. PUE exhibited significant antioxidant effects with IC50 values of 56.18 and 22.49 µg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′- azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) inhibition (%), respectively. In addition, GC/MS and HPLC analyses revealed several bioactive compounds of PUE. Pretreatment with PUE significantly (p < 0.05) decreased the ulcer index by preventing gastric mucosal lesions, erosion, and cellular degeneration. An immunohistochemical analysis revealed that PUE markedly attenuated leucocyte infiltration in a dose-dependent manner. The enhancement of PGE2 levels and attenuation of cAMP levels along with the inhibition of histamine release following PUE pretreatment was associated with the cytoprotective and healing effects of PUE. In contrast, the downregulation of the H+/K+ ATPase pathway as well as muscarinic receptor (M3R) and histamine receptor (H2R) inhibition was also involved in the gastroprotective effects of PUE; however, the expression of cholecystokinin-2 receptors (CCK2R) was unchanged. Finally, no signs of toxicity were observed following PUE treatment. Based on our results, we conclude that PUE represents an effective therapeutic option to reduce the risk of gastritis and warrants further study.
Antonella Smeriglio, Giovanni Toscano, Marcella Denaro, Clara De Francesco, Simona Agozzino, Domenico Trombetta, Antioxidants, 8, 331 (9), 2019
The functional foods field has recently evolved due to new research being carried out in the food area and greater regulations; these factors have contributed to the creation of health claims, and to the increasing attention that consumers give to health-promoting food products. The aim of this research was to improve the shelf-life of a typical functional food of the Mediterranean diet, the Extra Virgin Olive Oil (EVOO). We focused our attention on the standardization and validation of a production process, starting from the cultivation and harvesting of the olives, which would guarantee a product of quality in terms of bioactive compound content. Furthermore, a methodology/procedure to preserve them in the best way over a long period of time, in order to guarantee the consumer receives a product that retains its functional and organoleptic native properties, was evaluated. The monitoring of biological cultivations, harvesting, milling process, and storage, as well as careful quality control of the analytical parameters (e.g., contents of polyphenols, α-tocopherol, fatty acids, acidity, peroxides, dienes, trienes, ΔK, and antioxidant power) showed that, under the same conditions, a nitrogen headspace is a discriminating factor for the maintenance of the functional properties of EVOO.
Rita Csepregi, Viktória Temesfői, Sourav Das, Ágnes Alberti, Csenge Anna Tóth, Róbert Herczeg, Nóra Papp, Tamás Kőszegi, Antioxidants, 9, 166 (2), 2020
Medicinal plants are widely used in folk medicine but quite often their composition and biological effects are hardly known. Our study aimed to analyze the composition, cytotoxicity, antimicrobial, antioxidant activity and cellular migration effects of Anthyllis vulneraria, Fuchsia magellanica, Fuchsia triphylla and Lysimachia nummularia used in the Romanian ethnomedicine for wounds. Liquid chromatography with mass spectrometry (LC-MS/MS) was used to analyze 50% (v/v) ethanolic and aqueous extracts of the plants’ leaves. Antimicrobial activities were estimated with a standard microdilution method. The antioxidant properties were evaluated by validated chemical cell-free and biological cell-based assays. Cytotoxic effects were performed on mouse fibroblasts and human keratinocytes with a plate reader-based method assessing intracellular adenosine triphosphate (ATP), nucleic acid and protein contents and also by a flow cytometer-based assay detecting apoptotic–necrotic cell populations. Cell migration to cover cell-free areas was visualized by time-lapse phase-contrast microscopy using standard culture inserts. Fuchsia species showed the strongest cytotoxicity and the highest antioxidant and antimicrobial activity. However, their ethanolic extracts facilitated cell migration, most probably due to their various phenolic acid, flavonoid and anthocyanin derivatives. Our data might serve as a basis for further animal experiments to explore the complex action of Fuchsia species in wound healing assays.
Parisa Abbasi-Parizad, Patrizia De Nisi, Fabrizio Adani, Tommy Pepé Sciarria, Pietro Squillace, Alessio Scarafoni, Stefania Iametti, Barbara Scaglia, Antioxidants, 9, 179 (2), 2020
Two tomato pomace (TP) were studied as feedstocks to obtain extracts that are rich in polyphenols. TPs prompt degradation impairs biomass safety, thus naturally present microflora were tested to perform conservation, and own lactic bacteria became predominant after 60 days of treatment. The extracts of TPs and TPs fermented (TPF) were chemically characterized and tested for antioxidant and anti-inflammatory activities. Flavonoids and phenolic acids were classed as aglycone-polyphenols (A-PP), the most bioactive polyphenol fraction. Fermentation led to a reduction of the A-PP amount, but no significant change in composition. Antioxidant power increased, despite the A-PP reduction, for the presence of fermentation metabolites having aromatic-substituent. TP and TPF both have anti-inflammatory properties that were strictly dependent upon the A-PP content. Fermentation preserved the anti-inflammatory activity and the Partial Least Square (PLS) identified as the most active molecules naringenin chalcone, kaempferol, gallic acid, and cinnamic acid, together with the definition of the active dose.
Gökçe Şeker Karatoprak, Çiğdem Yücel, Fatih Göger, Eduardo Sobarzo-Sánchez, Esra Küpeli Akkol, Antioxidants, 9, 293 (4), 2020
Salvia aramiensis Rech. f. is a species that grows only in Hatay, Turkey and is used as a traditional stomachic tea. Neither the chemical composition nor the potential bioactivity of the plant has been investigated before. Antioxidant activity (1,1-Diphenyl-2-picrylhydrazyl Radical (DPPH●) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS+●) radical scavenging and β-carotene/linoleic acid co-oxidation) of 70% methanol, 70% ethanol extracts, and 2% infusion obtained from S. aramiensis aerial parts were determined. The effect of 70% methanol extract on collagenase and elastase enzyme inhibition and its chemical composition via chromatographic methods (LC-MS/MS and HPLC) were analyzed. Nanoliposomes were developed with 70% methanol extract, were characterized, and were evaluated. The key parameters for the most active 70% methanol extract included the following DPPH•EC50: 28.4 µg/mL, Trolox equivalent antioxidant capacity (TEAC)/ABTS: 1.77 ± 0.09 mmol/L/Trolox. Furthermore 70% methanol extract showed more than 50% inhibition on collagenase and elastase enzymes at all the concentrations. The main component of the extract, rich in phenolic compounds, has been identified as rosmarinic acid; 83.7 µg/mL extract was released from the nanoliposomal formulation. The extract and its formulation are found to be nontoxic on the L929 fibroblast cell line. This study successfully developed a long-term antioxidant and enzyme inhibitory formulation containing S. aramiensis, which has been used safely among the public for years.
Mirela L. Moldovan, Rahela Carpa, Ionel Fizeșan, Laurian Vlase, Cătălina Bogdan, Sonia M. Iurian, Daniela Benedec, Anca Pop, Antioxidants, 9, 373 (5), 2020
Winery industry by-products have a great reuse potential in the pharmaceutical and cosmetic fields due to their bioactive compounds. This study investigates the phytochemical profile and the bioactivity of Vitis vinifera variety Fetească neagră tendrils extract (TE) and leaves extract (LE), intended to be used in oral hygiene products recommended in periodontal disease. The evaluation of the phenolic content was performed by colorimetric analysis. Liquid chromatography coupled with mass spectrometry was used to determine the chemical profile of the two extracts obtained from V. vinifera. Moreover, the antioxidant activity of the extracts was determined by spectrophotometric methods, as well as on human gingival fibroblasts (HGF) cell line. The cytocompatibility and cytoprotective effect against nicotine-induced cytotoxicity were tested, as well as the anti-inflammatory and antimicrobial effects. The TE showed higher total polyphenolic content, rich in rutin, compared to the leaves extract that displayed important amounts of isoquercitrin. The antioxidant effect was confirmed by both non-cellular and cellular tests. The cytocompatibility of the extracts was confirmed at a wide range of concentrations. The cytoprotective effect was demonstrated in HGF exposed to cytotoxic doses of nicotine; 300 µg/mL of both tested extracts decreased nicotine toxicity by approximately 20%. When challenged with E. coli polysaccharides, in HGF cells co-exposed to TE and LE, a reduction in the release of proinflammatory cytokines (IL-8, IL-6 and IL-1β) was observed. The extracts were both able to reduce the levels of reactive oxygen species and inflammatory cytokines, and had notable antimicrobial effects on pathogenic bacteria associated with periodontitis.
Only abstracts that are published under https://creativecommons.org/licenses/by/4.0/ are shown on this page.

About QuestPair

QuestPair Analytics inventorises the usage of scientific equipment such as the Agilent 1100 in research organisations and laboratories around the world. Our goal is to make it easier for professionals in research and industry to discover the availability and use cases for specific types of laboratory equipment. We also identify locations where different brands and models are used, which we believe can help to facilitate a more efficient and circular usage of existing instruments. For example, researchers and makers can use our services to find the necessary equipment that is required to complete a specific research purpose or to analyze or create advanced materials. QuestPair may also suggest places where the model or similar equipment is available for sale or rent through manufacturers and suppliers within our network.
Disclaimer: The data on this site is intended for educational purposes only. QuestPair assumes no responsibility or liability for any errors or omissions in the content of this site. The information contained in this site is provided and presented on an “as is“ basis with no guarantees of completeness, accuracy, usefulness or timeliness.

Customer Service

Here to help you with: Product Inquiries, Shipping & Support, Technical Support, Business Inquiries and Press.

We are available to assist you Mon-Fri, 10am - 5pm CET.

+31 (0) 73 7114717
[email protected]